GRUP ALJABAR DAN -MODUL REGULAR

SKRIPSI SARJANA MATEMATIKA

OLEH:

FITRIA EKA PUSPITA

07934028

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ANDALAS

PADANG

2011

ABSTRAK

Misalkan G adalah grup hingga dengan unsur-unsur $g_1,g_2,...,g_n$ dan misalkan F adalah lapangan $\mathbb C$. Ruang vektor V atas $\mathbb C$ dengan $\{g_1,g_2,...,g_n\}$ sebagai basis dinamakan ruang vektor $\mathbb C G$. Elemen-elemen pada ruang vektor $\mathbb C G$ berbentuk: $\lambda_1g_1+\lambda_2g_2+...+\lambda_ng_n$, untuk setiap $\lambda_i\in\mathbb C$. Ruang vektor $\mathbb C G$ dengan perkalian yang didefinisikan sebagai: $(\sum_{g\in G}\lambda_g\,g)(\sum_{h\in G}\mu_hh)=\sum_{g,h\in G}\lambda_g\mu_h(gh)$, untuk setiap $\lambda_g,\mu_h\in\mathbb C$, disebut grup aljabar $\mathbb C G$. Grup aljabar $\mathbb C G$ adalah $\mathbb C G$ -modul regular jika perkalian gv (untuk setiap $g\in G$ dan $v\in V$) terdefinisi dan memenuhi kondisi-kondisi berikut: $gv\in V$, (gh)v=g(hv), $\vec{1}v=v$, $g(\lambda v)=\lambda(gv)$, g(u+v)=gu+gv, untuk setiap $u,v\in V,\lambda\in\mathbb C$, dan $g,h\in G$. $\mathbb C G$ -modul regular adalah faithful, yaitu: elemen identitas dari G adalah satu-satunya elemen di G yang memenuhi gv=v untuk setiap $v\in V$.

Kata kunci: ruang vektor CG, grup aljabar CG, CG-modul regular, faithful.

BAB I

PENDAHULUAN

1.1 Latar Belakang

Teori representasi grup merupakan suatu teori yang berkaitan dengan caracara menuliskan suatu grup sebagai suatu grup dari matriks. Misalkan G adalah grup hingga dan \mathbb{C} adalah himpunan bilangan kompleks. Grup yang beranggotakan matriks $n \times n$ yang dapat diinverskan dengan entri-entri di \mathbb{C} , dinotasikan sebagai $GL_n(\mathbb{C})$ dan dinamakan grup linier umum (general linear group) berderajat n atas \mathbb{C} . Suatu representasi dari G adalah homomorfisma grup $\rho: G \to GL_n(\mathbb{C})$. [4]

Terdapat beberapa konsep penting yang dapat membantu memahami teori representasi, antara lain: $\mathbb{C}G$ -modul, grup aljabar $\mathbb{C}G$, dan $\mathbb{C}G$ -modul regular. Dalam tulisan ini akan dibahas tentang grup aljabar $\mathbb{C}G$ dan $\mathbb{C}G$ -modul regular.

 $\mathbb{C}G$ -modul adalah suatu ruang vektor V atas \mathbb{C} dengan suatu perkalian gv untuk setiap $g\in G$ dan $v\in V$ yang memenuhi kondisi-kondisi tertentu. Sedangkan grup aljabar $\mathbb{C}G$ adalah suatu ruang vektor $\mathbb{C}G$ dengan basis $\{g_1,g_2,\ldots,g_n\}$ yang didalamnya didefinisikan suatu perkalian

$$\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh)$$
 (i)

untuk setiap $\lambda_g, \mu_h \in \mathbb{C}$. Grup aljabar $\mathbb{C}G$ dengan suatu perkalian gv untuk setiap $g \in G$ dan $v \in V$ akan menjadi suatu $\mathbb{C}G$ -modul yang dikenal dengan nama $\mathbb{C}G$ -modul regular.

1.2 Perumusan Masalah

Berdasarkan latar belakang, maka perumusan masalah dalam penulisan tugas akhir ini adalah bagaimana sifat dari suatu grup aljabar $\mathbb{C}G$ dan sifat dari suatu $\mathbb{C}G$ -modul regular.

1.3 Pembatasan Masalah

Pada tulisan ini hanya dibahas grup aljabar $\mathbb{C}G$ dan $\mathbb{C}G$ -modul regular dari suatu grup hingga pada ruang vektor hingga atas lapangan bilangan kompleks.

1.4 Tujuan Penulisan

Adapun tujuan dari penulisan tugas akhir ini adalah menjelaskan sifat dari suatu grup aljabar $\mathbb{C}G$ dan sifat dari suatu $\mathbb{C}G$ -modul regular.

1.5 Sistematika Penulisan

Sistematika penulisan tugas akhir ini adalah sebagai berikut: Bab 1 Pendahuluan, berisi: latar belakang masalah, perumusan masalah, pembatasan masalah, tujuan penulisan, dan sistematika penulisan. Definisi matriks, definisi grup, dan sifat-sifat dari suatu homomorfisma, definisi dan teorema dari ruang vektor, definisi dan teorema dari pemetaan linier serta definisi dan teorema dari representasi grup dituangkan dalam Bab 2 Landasan Teori. Bab 3 Pembahasan, memuat tentang: definisi dan proposisi dari grup aljabar $\mathbb{C}G$, definisi dan proposisi dari $\mathbb{C}G$ -modul regular, aksi $\mathbb{C}G$ pada $\mathbb{C}G$ -modul serta contoh yang mendukung masalah. Kesimpulan-kesimpulan dari pembahasan yang telah dijelaskan pada Bab 3 dimuat dalam Bab 4 Kesimpulan.

BAB III

GRUP ALJABAR $\mathbb{C}G$ DAN $\mathbb{C}G$ -MODUL REGULAR

Pada bab ini akan dijelaskan tentang grup aljabar $\mathbb{C}G$ dan $\mathbb{C}G$ -modul regular yang mempunyai peranan penting dalam teori representasi.

3.1 Grup Aljabar $\mathbb{C}G$

Definisi 3.1.1 [4]

Misalkan G adalah grup hingga dengan elemen-elemen $g_1, g_2, ..., g_n$ dan misalkan F(lapangan) adalah \mathbb{C} , maka ruang vektor V atas \mathbb{C} dengan $\{g_1, g_2, ..., g_n\}$ sebagai basis dinamakan ruang vektor $\mathbb{C}G$. Basis $\{g_1, g_2, ..., g_n\}$ disebut dengan basis natural dari ruang vektor $\mathbb{C}G$.

Elemen-elemen pada ruang vektor $\mathbb{C}G$ berbentuk

$$\lambda_1 g_1 + \lambda_2 g_2 + \ldots + \lambda_n g_n$$

untuk setiap $\lambda_i \in \mathbb{C}$.

Elemen-elemen pada ruang vektor $\mathbb{C}G$ juga bisa ditulis dalam bentuk

$$\sum_{g \in G} \lambda_g g$$

untuk setiap $\lambda_g \in \mathbb{C}$.

Jika $u=\sum_{i=1}^n\lambda_ig_i$ dan $v=\sum_{i=1}^n\mu_ig_i$, maka penjumlahan dan perkalian skalar pada ruang vektor $\mathbb{C}G$ didefinisikan dengan:

1.
$$u + v = \sum_{i=1}^{n} (\lambda_i + \mu_i) g_i$$
,

2.
$$ku = \sum_{i=1}^{n} (k\lambda_i) g_i$$
,

BAB IV

KESIMPULAN

Grup aljabar $\mathbb{C} G$ adalah ruang vektor $\mathbb{C} G$ dengan perkalian yang didefinisikan sebagai

$$\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh)$$

untuk setiap λ_g , $\mu_h \in \mathbb{C}$.

Pada grup aljabar $\mathbb{C}G$ berlaku sifat perkalian berikut: $rs \in \mathbb{C}G$, r(st) = (rs)t, $r\vec{1} = \vec{1}r = r$, $(\lambda r)s = \lambda(rs) = r(\lambda s)$, (r+s)t = rt + st, r(s+t) = rs + rt, dan $r0 = 0r = \vec{0}$, untuk setiap r, s, t elemen-elemen dari grup aljabar $\mathbb{C}G$ dan $\lambda \in \mathbb{C}$.

Suatu grup aljabar $\mathbb{C}G$ adalah $\mathbb{C}G$ -modul regular jika perkalian gv (untuk setiap $v \in V$ dan $g \in G$) terdefinisi dan memenuhi kondisi-kondisi berikut, untuk setiap $u,v \in V, \lambda \in \mathbb{C}$, dan $g,h \in G$: $gv \in V$, (gh)v = g(hv), $\vec{1}v = v$, $g(\lambda v) = \lambda(gv)$, g(u+v) = gu + gv.

Misalkan V adalah $\mathbb{C}G$ -modul regular. Pada $\mathbb{C}G$ -modul regular berlaku sifatsifat berikut:

- 1. Untuk setiap $u, v \in V, \lambda \in \mathbb{C}$, dan $r, s \in \mathbb{C}G$: $rv \in V$, (rs)v = r(sv), $\vec{1}v = v$, $r(\lambda v) = \lambda(rv) = (\lambda r)v, \quad r(u+v) = ru + rv, \quad (r+s)v = rv + sv, \quad \text{dan}$ $r\vec{0} = \vec{0}v = \vec{0}.$
- 2. V adalah faithful karena elemen identitas dari G adalah satu-satunya elemen di G yang memenuhi gv = v untuk setiap $v \in V$.

DAFTAR PUSTAKA

- [1] Anton, Howard, Chris Rorres. 2004. *Aljabar Linier Elementer*. Erlangga, Jakarta.
- [2] Arifin, Achmad. 2000. Aljabar. ITB, Bandung.
- [3] Jacob, Bill. 1990. Linear Algebra. W.H. Freeman and Company, New York.
- [4] James, Gordon, Martin Liebeck. 2001. *Representations and Characters of Groups*. Second Edition. Cambridge University Press.