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Ratna Aisuwarya

Abstract

Seed ordering and selection is a key technique to provide high-test quality

with limited resources in Built-In Self Test (BIST) environment. We present a

hard-to-detect delay fault selection method to accelerate the computation time

in seed ordering and selection processes. This selection method can be used to

restrict faults for test generation executed in an early stage in seed ordering and

selection processes, and reduce a test pattern count and therefore a computation

time. We evaluate the impact of the selection method both in deterministic BIST,

where one test pattern is decoded from one seed, and mixed-mode BIST, where

one seed is expanded to two or more patterns. The statistical delay quality level

(SDQL) is adopted as test quality measure, to represent ability to detect small

delay defects (SDDs). Experimental results show that our proposed method can

significantly reduce computation time from 28% to 63% and base set seed counts

from 21% to 67% while slightly sacrificing test quality.
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1. Introduction

New challenges emerge for testing field engineering, as VLSI technologies are scale

down to nanometer. This leads to the increasing probability of timing-related

defects to occur. As a result, the stuck-at test cannot ensure high quality level of

chips, and at-speed test is needed to cover these timing-related defects. One of the

defects is small delay defects (SDDs), which is caused by resistive opens, resistive

shorts and some other process variations might significantly impact the overall

product quality especially for the 45nm technology and below if such defect is a

critical path. Thus, serious consideration is growing rapidly in targeting these

SDDs to minimize the test escape rate as well as improve defect coverage in some

extent of in-field reliability [1]. In order to detect SDDs, propagation through

long path is required. Conventional Automatic test pattern generation (ATPG)

tools tend to generate test pattern that target the fault along the path which is

the short path [2].

Therefore, commercial timing-aware ATPG tools, e.g., Synopsys TetraMAX

SDD mode have been developed to overcome the lack of coverage of conventional

timing-unaware ATPGs [3]. In spite of the ability to activates each undetected

fault along paths with minimal timing slack, they result in significantly large

CPU runtime and pattern count. The increasing pattern count is not practical

to be applied for the testing environment with limited resources. To avoid the

high cost of testing resources, novel methods are required to reduce the pattern

count but still capable of targeting SDDs effectively.

Seed ordering and selection can be an effective method to reduce the storage

for seeds [4]. LFSR reseeding based BIST was first introduced by Koenemann in

[5] as a technique for coding test patterns into pseudo-random pattern generators

(PRPGs). In terms of targeting SDDs, the proposed method in [6] considered

the test compression for seed selection problem in LFSR-reseeding-based BIST,

however it only utilized one seed for one pattern, or deterministic pattern in the

compression method.

Since, we can apply some pseudo-random patterns combined with determin-

istic patterns (mixed-mode BIST) more seeds might be reduced and there is a

chance that the patterns increase the defect coverage of SDDs. Recent seed or-

dering and selection method, proposed by Yoneda et al. [7] selects seeds based
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on the gain in the sum of the longest path lengths sensitized by seeds, which

is correlated with statistical delay quality level (SDQL). Experimental results

show that this method can obtain significant seed count reduction under several

mixed-mode BIST approaches, yet still considered to be time consuming, since it

generated the entire faults into test patterns and later encoded into seeds. This

is why we need another solution considered test time constraints as a compromise

between the SDQL and the resources.

In this research, our purpose is a hard-to-detect fault selection method to

reduce the computation time in seed ordering and selection process. This selection

method can be used to restrict faults for test generation when it is impractical to

target all delay faults that result in large test pattern count and long computation

time. Especially for a much larger and complex circuit, It will be very useful if

we put more consideration on resources, such as memory and storage.

To avoid the excessive usage of resources, in our proposed method, target

faults are restricted based on the number of test patterns that detect each faults

for a given test set. We examine three types of hard-to-detect fault selection

method, select-1, select-3, and select-5, where select-n means the faults detected

at most n-times are selected. We use seed ordering and selection method in [7]

and evaluate the delay test quality based on SDQL as in [8]. The quality of seed

generated from the base set of our proposed method will be compared to the

previous work [7] in deterministic and mixed-mode BIST environments.

This thesis is organized into the following sections: section 2 explains the

necessary theories and research topics that are related to our research. Section

3 gives the details of hard-to-detect fault selection method. Chapter 4 describes

experimental results of the proposed method. The evaluation will be divided

into three parts; base seed set, delay test quality, and computation time. Finally

section 5 conclude this thesis.
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2. Preliminaries

This section gives the necessary theories and research topics that are related

to this thesis. Subsection 2.1 explains the basics of Delay Test and focus on

transition delay fault model (TDF) and Small Delay Defects (SDDs). It briefly

describes TDF model, then the techniques for testing TDFs. Additionally, as

technology continues to scale down, more delay variations are occur, which can

affect the performance of a circuit. One of those delay variations is caused by

small delay defects (SDDs). This section will mention about SDDs, which are

grown serious consideration to help increase defect coverage and hence test qual-

ity. Subsection 2.2 explains the automatic test pattern generation (ATPG) and

it describes several types of ATPG that are used in our experiments. Subsection

2.3 gives an overview about build-in-self-test (BIST), one of Design for Testa-

bility (DFT) techniques in literature. This subsection only focuses on the BIST

methodologies that are the most commonly used in industry. LFSR-reseeding-

based BIST also introduced. Subsection 2.4 discusses some related methods for

seed ordering and statistical delay quality level (SDQL). Finally subsection 2.5

explain about seed ordering and selection method in LFSR-reseeding-based BIST.

2.1 Delay Test

Delay faults cause errors in the functioning of a circuit based on its timing. They

are caused by the rising or falling delay of the signals in the gates, as well as, the

propagation delay of interconnects between the gates. The delay of the circuit

has to be carefully evaluated to avoid such errors in the function of the circuit.

Tests have to be generated specially to account for these faults.

2.1.1 Transition Delay Fault Model (TDF)

Transition delay fault model [9] assumes that the delay fault affects only one gate

in the circuit. There are two transition faults associated with each gate; a slow-

to-rise fault and a slow-to-fall fault. It is assumed that in the fault-free circuit

each gate has some nominal delay. Delay faults result in an increase or decrease

of this delay. Under the transition fault model, the extra delay caused by the

fault is assumed to be large enough to prevent the transition from reaching any
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primary output at the time of observation. In other words, the delay fault can

be observed independent of whether the transition propagates through a long or

a short path to any primary output.

Figure 1. Transition Delay Fault Example

Figure 1 shows TDF’s effected signal propagation on a circuit. In the example,

the input flip-flop (shown as ”input DFF”) launches a rise-transition on its output

pin Q1 at the rising edge of CLK1. Then the rise-transition at Q1 is propagated

to the output flip-flop (shown as ”Output DFF”). If the circuit is fault-free,

the rising transition arrive at D2 before the capture clock on the output DFF

”CLK2”, and the timing diagram should be similar to Fig.1.(b). However, if there

is a TDF in the circuit as shown in Fig.1.(a), the signal propagation is slowed

down and the transition exceed the specified clock period as shown in Fig.1.(c).

As a result, the output DFF is not able to capture the correct value at D2 at the

rising edge of CLK2. In other words, the TDF causes the circuit to fail and alter

the performance of the circuit.
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The main advantage of TDF model is that the number of faults in the circuit

is linear in terms of the number of gates. Also, the stuck-at-fault test generation

and fault simulation tools can be easily modified for handling transition faults.

On the other hand, the expectation that the delay fault is large enough for the

effect to propagate through any path passing through the fault site might not be

realistic because short paths may have a large slack. A delay defect can affect

more than one gate and even though none of the individual delay faults is large

enough to affect the performance of the circuit, several faults can together result

in a performance degradation.

2.1.2 Transition Delay Fault Testing

To detect a transition delay fault, two input vectors V = v1,v2 are applied. The

first vector, v1, initializes the circuit, while the second vector, v2, activates the

fault and propagates its effect to some primary output. Vector v2 can be found

using stuck-at-fault test generation tools. For example, for testing a slow-to-rise

transition, the first vector initializes the fault site to 0, and the second vector is

a test for stuck-at 0 fault at the fault site. A transition delay fault is considered

detected if a transition occurs at the fault site and sensitized path extends from

the fault site to some primary output.

Launch-off-capture(LOC) or broadside method [10] is one of transition fault

pattern generation methods. Figure 2 shows the waveform of LOC method. In

LOC, once the test pattern shifted in, the scan enable (SEN) signal transition

from 1 to 0. In the LOC method, the launch cycle is separated from the shift

operation. First pattern is applied and the circuit under test (CUT) is set to an

initialized state at the end of shift-in mode, and at lauch clock the second pattern

is applied. Launch and capture clocks are applied at a system speed, then the

SEN signal is raised prior to shifting out.

2.1.3 Small delay Defects (SDDs)

The delay fault model covers many physical defects on real silicon, including the

effects of process variations, temperature, on-chip power supply noise, crosstalk,

resistive opens, resistive shorts, etc [1]. One of timing defect variations introduces

a small amount of extra delay to the design, which is called Small Delay Defects
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Figure 2. Waveform of LOC Method

(SDDs). Because of their small size relative to the timing margins allowed by the

maximum operating frequency of a design, SDDs were not seriously considered

in the testing of designs at higher technology nodes.

Although the delay introduced by each SDD is small, the overall impact can be

significant if the sensitized path is long or critical path, especially when technology

scales to 45nm and below [1]. As the shrinking of technology geometries and

increasing of operating frequency of the design continues, the available timing

slack becomes smaller. Therefore, SDDs have a good chance to add enough

additional delay. Figure 3 shows three possible paths to detect a delay fault.

TDF pattern generation typically generates a test pattern that activates fault

along the path with the largest timing slack (path 3 in the figure). This pattern

doesn’t cover smaller delay defects in path 1 and path 2. In this case path 1 has

the smallest slack.

TDF model has been widely used in industry, however, the TDF generation

ignores the actual delays through the fault activation and propagation paths, and

is more likely to detect a fault through a shorter path. As a result, the generated

test set may not be capable of detecting SDDs. Therefore, most research on

SDDs has been aimed at finding the longest path in a circuit. Due to the growing

interest in SDDs, commercial timing-aware automatic test patterns generation

(ATPG) tools were introduced recently, e.g., Mentor Graphics FastScan, Cadence
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Figure 3. Fault Propagation Path on a delay Fault

Encounter Test, and Synopsys Tetramax tools [3]. However, timing-aware ATPG

tools need longer CPU times and produce high pattern counts. Therefore, test

data compression is needed especially for the field test with limited resources.

2.2 Automatic Test Pattern Generation (ATPG)

Automatic test pattern generation (ATPG) is the process of automatically gen-

erating a set of test patterns for detecting a specific group of faults. The inputs

of the ATPG procedure are design data (e.g., netlist), fault list (specifying what

faults are targeted), test protocol and test constraints, and the output is a set of

test patterns. The test patterns are then applied to the design for fault detection.

If a fault can be detected by the input test patterns, it is called a detected fault.

Otherwise, it is called an undetected fault.

7



2.2.1 Timing-aware ATPG

Timing-aware ATPG is an improved version of transition fault, with timing in-

formation in-form of SDD. The faults are targeted similar to transition fault, i.e.

every node in the design is a fault site. In transition faults, the tool launches

and captures from randomly selected path. In contrast, timing-aware ATPG tool

tries to launch from the longest path and captures based on the timing informa-

tion provided in the loaded SDD file. Figure 4 explain the difference between

transition fault and timing-aware ATPG.

����������	
�������
�


Figure 4. Transition fault and timing-aware ATPG

In Figure 4, there are four example paths to illustrate how timing-aware ATPG

operates:

• R1: 4ns (U1-G1-G2-G3-U4)

• R2: 3ns (U1-G1-G2-U3)

• R3: 3ns (U2-G2-G3-U4)

• R4: 2ns (U2-G2-U3)

The path used for testing transition fault at the output of AND gate G2

is R4, which is just 2ns. The same fault is now being targeted with a path

8



R1, which is 4ns in timing-aware ATPG. To understand the impact of timing-

aware ATPG, let us assume that the clock period in Figure 4 is 5ns and during

manufacturing a small delay defect of 1.5ns introduced in output of G2. This

small delay defect can be detected with timing-aware ATPG approach, but will

escape the transition testing. The disadvantage of timing-aware ATPG is that

it needs more time during fault simulation as the ATPG tools needs to calculate

timing to select the right path for testing. This results in higher computation

time. Secondly, timing-aware ATPG needs more pattern to achieve the same

transition fault coverage, though timing-aware ATPG gets better delay coverage,

which means better coverage for small delay defects.

2.2.2 N-Detect ATPG

In order to enhance the quality of a test set, and increase the coverage of all

possible defects, we may generate a test set that achieves multiple detections of

every fault under a given fault model. A fault is detected multiple times if it is

detected with different vectors. By propagating the fault effect different ways, it

is hoped that any defect close to a target fault will have an increased change of

being detected.

In an n-detect setup, each fault must be targeted multiple times by an ATPG.

In other words, all vectors generated that could detect a target fault are marked,

and a fault is removed from further consideration when it has been detected n

times. It has been shown that the size of an n-detect test set grows approximately

linearly with respect to n [13].

2.3 Built-In Self-Test (BIST)

Build-in self-test (BIST) is a design for testability (DFT) technique that targets

at detecting faulty components in a system by incorporating the test logic on-chip.

The BIST has become a promising solution to VLSI testing problems and has

been widely used in industry. Figure 5 shows a typical BIST hardware structure.

In BIST, a test pattern generator (TPG) is used to generate test patterns and

apply them to the circuit under test (CUT). The output response from the CUT

is then compared with the reference signature stored in the ROM during BIST.

9



The entire process is controlled by a BIST controller.
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Figure 5. BIST Architecture

2.3.1 Scan-based BIST

Scan-based BIST is a type of DFT that allows test designer to design and add

TPG, i.e. LFSR, to the scan architecture to generate pseudo-random patterns.

The pseudo-random patterns are serially loaded into each scan chain of the CUT

(Fig. 6). Response compactor is used for compacting the test responses. A scan-

based BIST architecture requires long sequences of pseudo-random patterns in

order to achieve acceptable fault coverage. The application of long test sequences

takes a large amount of time, which limits the use of pseudo-random scan-BIST

methods for field testing.

2.3.2 LFSR-reseeding-based BIST

In BIST, deterministic patterns are often encoded into seeds that are loaded into

the LFSR used as pseudo-random pattern generation (PRPG) and then expanded

into the desired patterns in the scan chains. A seed is an initial state for the LFSR

which, computed by solving a system of linear equations based on the feedback

polynomial of the LFSR [5]. Instead of storing each full test patterns on the tester,

a much smaller LFSR seed is stored instead. Since, the seeds are much smaller

than the full test patterns, the test data storage and other resources (memory or

hardware) requirements for testing can be reduced.

10
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Figure 6. Scan-based BIST Architecture

When the LFSR is placed in this initial state it is expanded into a precomputed

test pattern in the scan chains after (m) cycles, where (m) is the length of the

longest scan chain. That is, it can produce the deterministic patterns. Reseeding

refers to reinitializing the LFSR with a new seed. If the LFSR runs for another m

cycles, another pseudo-random pattern is loaded into the scan chains. It is used

to improve the fault coverage with pseudo-random patterns (mixed-mode BIST),

since there is a chance that these patterns may detect more SDDs during testing.

Take as an example the LFSR used as a PRPG in Figure 7 for a single scan

chain of 10 flip-flops (FFs). Where an LFSR consist of 4 FFs L0, L1, L2, L3, and

feedback loops with an XOR gate; and a scan chain consists of 10 FFs S0, S1,

..., S9. By initializing the LFSR at the state (0111) and running the clock for 10

clock cycles, the pattern (0011010111) will end up in the scan chain.

By solving a linear system of equations, seeds are encoded into deterministic

test patterns, which is an algebraic representation of the linear expansion of

the LFSR into the scan chains’ flip-flops. In this thesis, we consider a mixed-

mode BIST technique where each seed si is expanded into di patterns. The first

pattern would be deterministic pattern and the remaining di − 1 patterns are

11



Figure 7. An LFSR connected to a scan chain

pseudo-random patterns.

2.4 Statistical Delay Quality Model (SDQM)

Many delay fault models were proposed to improve test pattern effectiveness. The

transition delay fault model considers the propagation of lumped delay defects by

logical transition to the observation pins or flip-flops. It is widely used because of

its high fault coverage, but it cannot detect defects causing delays that are smaller

than the test timing. A statistical delay quality model (SDQM) that reflects

fabrication process quality, delay margin of design, and test timing accuracy

have been proposed by Sato et al [8]. This model evaluate test quality based on

delay defect distribution function.

The SDQM considers rising and falling delay faults on each of input and

output pins of each gate. Though the number of faults is the same as transition

faults, a delay defect size is associated with each fault. Figure 8 shows a concept

of delay defect sizes that should be detected and can be detected by a given test

set.

Let f be a fault, and let LA and LB be the lengths of the longest true path

passing through f and the longest path passing through f that is actually sensi-

tized by a given test set, respectively. Let TMC and TC be system clock timing and

test timing, respectively. the difference T f
mgn = TMC − LA is the minimum delay

defect size that can affect system behavior and therefore should be detected. the

difference Tdet = Tc − Lb is the minimum delay defect size that can be actually

detected by a given test set. Let N be the total number of faults and F (t) is

a delay defect distribution function. The statistical delay quality level (SDQL)

represents the amount of delay defects escaped to be detected by the test set, can

be expressed by:

12
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Figure 8. Timing Concept of Delay Defect Size

SDQL =
∑
f∈N

T f
det∫

T f
mgn

F (t)dt (1)

A shadow area in Figure 9 shows an amount of delay defect for one fault

escaped during test. Therefore, smaller SDQL means better delay test quality.

s : delay defect size

F(s)

delay defect 
distribution

timing redundant

detected by a test set

Tdet

detected by the longest path

Tmgn

test 
escape

SDQL

Figure 9. Delay Defect Distribution function and SDQL
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2.5 Seed Ordering and Selection

In this subsection, seed ordering and selection technique are introduced. Seed

ordering methods can be effective to reduce test data volume. Since, the seeds

will be ordered based on the effectiveness. There is a chance that some of seeds

may not need to be loaded, because the target faults are already detected by the

pseudo-random patterns.

We adopt seed ordering and selection in LFSR-reseeding-based BIST proposed

by Yoneda et al [7]. This method selects seeds based on the gain in the sum of the

longest path lengths sensitized by seeds, which is highly correlated with SDQL.

Consider a set S of i + seeds that are selected. The i − th seed is selected as

follows. For each fault, the length of the longest path sensitized by a seed set

calculated without delay defect distribution function F (t) and fault simulation,

once the length of the longest path sensitized by each seed is obtained. Assume

LS
f and lsf be the length of the longest path sensitized by the generated patterns

from seed set S and a seed s for a fault f , respectively. Let Ls be the sum of

the longest sensitized path lengths for the generated patterns from S. L(S+s) is

obtained as follows.

L(S+s) = LS +
∑
f∈N

max(lsf − lSf , 0) (2)

The gain is defined as the sum of the longest sensitized path lengths when s

is added to S as GainS,s.

GainS,s = L(S+s) − LS =
∑
f∈N

max(lsf − lSf , 0) (3)

Seed s with the largest GainS,s is selected as the i− th test pattern. Thus, the

increase of the longest sensitized path length for a fault f implies the decrease

of T f
det, which implies the decrease of SDQL. This method apply fault simulation

only one time to obtain a SDQL value and lsf for each seed in the base seed set

(Sbase). The first seed is selected based on SDQL value, seed with the minimum

SDQL will be placed in the head of a sequence of seeds. Next, calculate gainS,s

for each seed in Sbase and order them based on the maximum gainS,s value. Notice

that, since only the first seed is selected based on SDQL, therefore we can save

some computation time in the ordering process.
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3. Hard-to-Detect fault Selection

In the previous work [7] seed ordering and selection method for LFSR-reseeding-

based have been proposed. From the processing flow in the figure 10, deterministic

patterns are generated by ATPG tools, and the patterns are encoded into a seed

set Sbase. Seeds in Sbase are ordered so that the SDQL improves by the maximum

amount with the inclusion of each additional seed. In the selection process, if there

is a seed count constraint k, select the top k seeds from the ordered sequence. If

there is a SDQL constraint, select the seed from the top of the ordered sequence

until the constraint is satisfied.
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Figure 10. Seed Ordering and Selection Flow of The Previous Work

The previous work suffers in large pattern set and long computation time.

These are our main concerns if we have limited resources in field test. Therefore,

we proposed hard-to-detect fault selection method. Our purpose is to create

smaller faults subset for test pattern generation, focused on hard-to-detect faults,

which are faults with relatively few test patterns that can detect it. Moreover,

test patterns for hard-to-detect faults are likely to detect a large number of easier-

to-detect faults. In this thesis, we consider a way to characterize hard-to-detect
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delay faults. The proposed method ranks faults according to their detection

count. Based on this ranking, it is possible to select a subset of faults of the

desired size as targets for test pattern generation. It is very important in order

to save computation time on test pattern generation since, it wasted a lot of time

in sensitized large number of faults. Our proposed method can be describe in

figure 11. There are two important processes, test pattern generation and fault

simulation to create subsets of hard-to-detect faults. We explain the details of

our proposed method in the following subsections.

�����������	�
�	������	

��������������	

�������������������������	

��������������� ����������

Figure 11. Hard-to-detect Fault Selection Flowchart

3.1 Test Pattern Generation

For test pattern generation for hard-to-detect fault selection in this thesis, we

applied n-detect ATPG. Since, it is known that the main drawback of timing-

aware ATPG is that they waste a lot of time operating on faults that do not

contribute to SDD coverage resulting in a large number of test patterns. Exper-

imental results [11][12] have demonstrated that timing-aware ATPGs will result

in significantly larger computation time and pattern count. Furthermore, they

seem ineffective in sensitizing large numbers of long paths.

Therefore, due to our purpose to accelerate computation time, for test pattern
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generation we don’t apply timing-aware ATPG, but n-detect ATPG instead. The

n-detect ATPG can also be an effective method for SDD detection, even without

timing information of the design. For each target fault, n-detect ATPG generates

patterns trying to detect it n times through different paths. Furthermore, n-

detect ATPG requires much lower computation time when compared with timing-

aware ATPG.

To improve fault coverage in scan-based BIST, deterministic pattern genera-

tion is preferred than pseudo-random pattern. Since, in the next process we have

to apply fault simulation to select hard-to-detect faults, therefore, an effective

test patterns set is generated.

3.2 Fault Selection

In order to create hard-to-detect faults subset, fault simulation is applied after

generating test patterns. By a given test patterns fault grading or fault simulation

of those patterns is performed. fault simulation is set to detects a fault up to

and including n times. This option allows fault detections to be active until the

fault has been detected n times. We restrict the number of detection with very

small n values, several subsets can be created. When a fault is detected up to n

times, it is then placed in select-n subset. Furthermore, the hard-to-detect subset

will be used in the timing-aware ATPG to generate patterns for targeting SDDs.

Therefore it can generate faster since the fault list base is reduced.

Figure 12. Seed Ordering Flow of Previous Work and Proposed Method

Figure 12 shows the comparison of seed ordering flow between the previous
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work and our proposed method. We can observe that in previous work they try

to generate all faults. Therefore, in timing-aware ATPG try to sensitize large

number of long paths which is required very long computation time and a large

pattern set. This large pattern set later will be encoded into seed, which is also

large in size. Hence, this is the main reason why we apply fault hard-to-detect

fault selection method to get smaller number of faults set in the earlier process

before generating test pattern in timing-aware ATPG. So, we can accelerate all

processes in pattern generation, encoding, and seed ordering.
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4. Experimental Results

In order to evaluate the effectiveness of our proposed method, This section

presents the results of experiments using several ITC’99 benchmark circuits. We

compared our proposed method with previous work without fault selection as

in [7]. To evaluate the results, we perform some simulation experiments. The

results will be explained in this thesis by four difference parts. (1) we evaluate

the base seed set generated by timing-aware ATPG; (2) delay test quality, in

terms of fault coverage and SDQL with base seed set generated by timing-aware

ATPG. Two different modes are used, deterministic BIST and mixed-mode BIST;

(3) we also evaluate base seed set generated from different ATPG patterns; (4)

Lastly, computation time, we observe the effect of our selection process to the

total computation time.

The characteristics of the benchmarks circuits that we used are shown in the

Table 1. Sysnopsis TetraMAX ATPG for small delay defect testing which targets

a subset of the transition fault model were used in the experiments. TetraMAX

will generate a specific set of transition fault tests that systematically try to find

the longest paths. For the experiments, we specify the coefficients probability

distribution function F(t) that is to be used in computing the SDQL.

F (t) = A.e−Bt + C (4)

The values of A,B,C is specified as follows, in this case we set F (TMC)=0.1

assumed that TMC is the system clock timing of the circuit. To maintain the

value, we calculate the above equation by given A = 1 and C = 0. Then we can

get the calculated values for B as in Table 1. This Table show the characteristics

of benchmark circuit that are used in the experiments.

Table 1. Characteristics of Benchmark Circuits
Circuit #gates #FFs #faults B in F (t)

b15 8,985 417 17,329 1.19

b17 2,776 1317 65,218 1.19

b18 79,400 3,020 172,403 0.71

b19 152,599 6,042 353,301 0.71
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4.1 Base Seed Set Generation

Our proposed method started with the selection of the target faults for test pat-

tern generation. Three different parameters are to specify hard-to-detect faults

(select − 1, select − 3, and, select − 5). After fault simulation and selection pro-

cess, hard-to-detect fault lists are obtained. Table 2 show that selection method

significantly reduced the number of faults.

Table 2. Fault base set for Generation Pattern

Select-1 Select-3 Select-5 Previous
b15 3,930 6,423 7,245 17,329
b17 15,868 25,942 29,062 65,218
b18 39,265 60,812 67,453 172,403
b19 78,454 121,472 134,392 353,301

Circuit
#Faults

Test patterns with unspecified bits (X) are generated by timing-aware ATPG

using the faults in table 2, then these patterns encoded into a base seed set.

Pattern generation results and seed generation results are shown in Table 3 and

Table 4 respectively, where #schains denotes the number of scan chains and

#LFSR denotes the number of FFs in LFSR. For the base seed sets in the Table

4, we compared the proposed hard-to-detect fault selection method with the

previous work) without fault selection. We can observe that the proposed method

obtained significant reduction in the number of seeds compared to previous work

up to 67,4%.

Table 3. Pattern Generation Results for Timing-aware ATPG

#LFSR #schains Select-1 Select-3 Select-5 Previous Select-1 Select-3 Select-5

b15 96 8 490 543 568 727 32.6    25.3   21.9    
b17 240 26 735 935 978 1,375 46.5    32.0   28.9    
b18 384 60 1,479 1,690 1,760 3,293 55.1    48.7   46.6    
b19 608 120 2,006 2,681 2,908 6,131 67.3    56.3   52.6    

Reduction (%)
Circuit

BIST  Architecture #patterns
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Table 4. Seed Generation Results for Timing-aware ATPG

#LFSR #schains Select-1 Select-3 Select-5 Previous Select-1 Select-3 Select-5

b15 96 8 478 528 553 700 31.7 24.6 21.0
b17 240 26 706 891 931 1,319 46.5 32.4 29.4
b18 384 60 1,415 1,609 1,689 3,129 54.8 48.6 46.0
b19 608 120 1,906 2,560 2,784 5,850 67.4 56.2 52.4

Circuit
BIST  Architecture #seeds Reduction (%)

4.2 Delay Test Quality

There are two important metrics in evaluating delay test quality of seed ordering

in our experiments. Fault coverage (FC) and SDQL. FC can be calculated using

following equation, where DT represents the number of detected faults, and TF

denotes the number of total faults in the circuit under test (CUT).

FC =
DT

TF
× 100% (5)

4.2.1 Deterministic BIST

As mentioned before, we evaluated the effectiveness of the proposed method using

the base seed sets generated by BIST with di=1 for all seed si, which considered

as deterministic pattern (one seed is expanded into one pattern). Figure 13 shows

the fault coverage and SDQL transitions for different benchmark circuits respec-

tively. From the figures we can observe that for only one deterministic pattern,

seed generated from previous faults base set achieved higher fault coverage and

lower SDQL compared to the proposed method. However, the previous method

results in large seed counts with unnecessary seeds which have less contribution

to SDQL in the base set set. If we are allowed to sacrifice SDQL a little, we can

obtain significant reduction in seed counts with our proposed method. Further-

more, when a seed is loaded in the LFSR, some pseudo-random patterns can be

applied and there is a possibility that these patterns will detect more faults. In

this case large seed counts is not necessary.
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Figure 13. Fault Coverage and SDQL Transition
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4.2.2 Mixed-mode BIST

In mixed-mode BIST contribution of pseudo-random patterns to delay test quality

is evaluated. Three types of mixed-mode BIST approaches are applied.

• Type I: every seed s is expanded into d patterns, where d is set to 1, 2, 4,

and 8.

• Type II: the first selected seed s1 is expanded into d patterns, and 1

deterministic pattern is generated from the other seeds, where d is set to

1024, 2048, and 4096.

• Type III: the first two seeds s1 and s2 will be expanded to d patterns, and

1 deterministic patterns is generated from the other seeds, where d is set to

1024, 2048, and 4096.

Table 5 show seed ordering results of mixed-mode BIST for b18 and b19.

We can observe that when d become large, SDQL value is decrease and the

number of test patterns are increased. This also correlated to test application

time. Furthermore, we compare the results between type I, type II and type III.

In this case, type III generates more pseudo-random patterns compared to two

other types. The results shows that the long pseudo-random patterns expanded

from one seed are more effective than the very short expanded pattern for every

seed in type I.

In our proposed method, we have to sacrifice SDQL depending on the selection

types. For example if we choose select − 1 for d = 1 in b18 circuit, SDQL loss

is 6.83% compare with previous type. However, if we chose select − 5, SDQL

loss can be reduced to 3.79%. Moreover, if the reduction in seed counts is more

concerned, select − 1 type can be the best option. Since, seed counts can be

reduced by 31,7%, 24.6%, and 21% for select − 1, select − 3 and select − 5

respectively.

4.3 Computation Time

We evaluate the acceleration in computation time for our proposed method. In

the experiments, two additional computation times are needed; computation time
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Table 5. Seed Ordering Results for Different Mixed-mode BIST

Select-1 Select-3 Select-5 Previous Select-1 Select-3 Select-5 Previous

1 75.29 77.03 77.68 80.21 34,894.94 34,165.45 33,789.73 32,510.24

2 75.63 77.3 77.89 80.33 34,735.76 34,030.25 33,665.68 32,428.76

4 75.92 77.52 78.07 80.43 34,556.28 33,866.16 33,516.78 32,315.38

8 76.17 77.71 78.2 80.54 34,390.90 33,731.80 33,389.95 32,203.47

1024 75.62 77.2 77.85 80.26 34,685.55 34,012.80 33,640.54 32,426.86

2048 75.74 77.3 77.94 80.3 34,600.98 33,937.69 33,564.83 32,384.50

4096 75.88 77.46 78.06 80.36 34,483.89 33,819.18 33,462.49 32,323.50

1024 75.78 77.31 77.93 80.28 34,599.11 33,943.39 33,575.58 32,387.12

2048 75.93 77.46 78.03 80.34 34,477.68 33,831.20 33,478.04 32,324.42

4096 76.1 77.64 78.15 80.43 34,330.71 33,687.38 33,351.41 32,232.54

1 72.89 74.71 74.96 78.72 74,077.77 72,316.43 72,123.42 68,274.49

2 73.2 74.9 75.15 78.79 73,755.27 72,093.86 71,891.89 68,156.53

4 73.44 75.06 75.32 78.86 73,406.32 71,798.39 71,595.62 67,944.48

8 73.71 75.23 75.5 78.99 73,050.98 71,530.23 71,310.90 67,688.74

1024 73.08 74.84 75.05 78.75 73,772.55 72,077.48 71,913.30 68,137.08

2048 73.2 74.91 75.12 78.77 73,592.33 71,950.11 71,786.90 68,069.92

4096 73.39 75 75.21 78.81 73,338.09 71,760.22 71,605.27 67,950.66

1024 73.21 74.9 75.13 78.78 73,610.69 71,972.19 71,793.07 68,072.68

2048 73.38 75 75.23 78.81 73,363.38 71,789.97 71,625.00 67,970.68

4096 73.6 75.1 75.34 78.86 73,027.66 71,542.90 71,378.98 67,804.02

b19

I

II

III

Circuit Type d
Fault  Coverage (%) SDQL

b18

I

II

III

Table 6. FC and SDQL Loss from Previous Work in Mixed-mode BIST

Select-1 Select-3 Select-5 Select-1 Select-3 Select-5

1 6.13 3.96 3.15 6.83 4.84 3.79

2 5.85 3.77 3.04 6.64 4.71 3.67

4 5.61 3.62 2.93 6.48 4.58 3.58

8 5.43 3.51 2.91 6.36 4.53 3.55

1024 5.78 3.81 3.00 6.51 4.66 3.61

2048 5.68 3.74 2.94 6.41 4.58 3.52

4096 5.57 3.61 2.86 6.26 4.42 3.40

1024 5.61 3.70 2.93 6.39 4.58 3.54

2048 5.49 3.58 2.88 6.25 4.45 3.45

4096 5.38 3.47 2.83 6.11 4.32 3.35

1 7.41 5.09 4.78 7.83 5.59 5.34

2 7.09 4.94 4.62 7.59 5.46 5.20

4 6.87 4.82 4.49 7.44 5.37 5.10

8 6.68 4.76 4.42 7.34 5.37 5.08

1024 7.20 4.97 4.70 7.64 5.47 5.25

2048 7.07 4.90 4.63 7.50 5.39 5.18

4096 6.88 4.83 4.57 7.35 5.31 5.10

1024 7.07 4.93 4.63 7.52 5.42 5.18

2048 6.89 4.83 4.54 7.35 5.32 5.10

4096 6.67 4.77 4.46 7.15 5.23 5.01

b18

I

II

III

b19

I

II

III

Circuit Type d
FC Loss (%) SDQL Loss (%)
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for generating patterns for transition delay fault (P.generation), and computation

time for fault simulation to create fault list based on the detection counts (Fsim).

Table 7 summarizes computation times for fault selection.

Table 7. Computation Time for Fault Selection

Circuit P.generation (m) Fsim (m)

b15 0.11 0.07
b17 1.08 0.41
b18 4.49 1.46
b19 7.25 4.49

To compare between the previous work and our proposed method, we evaluate

each computation time in:

1. Fault selection. (Time to select faults in the proposed method).

2. ATPG. (Time for generating patterns).

3. Ordering. (Time for fault simulation in seed ordering).

Since, fault selection is only applied in our proposed method, for previous

work we set this time to 0. Table 8 shows Computation time for all processes.

The results show that the original work consumed longer time due to the fact

that it targeted all faults during timing-aware ATPG. Therefore, if the test time

is expensive, our proposed method can be applied to accelerate testing time.

Figure 14 shows the computation time for different circuits. We can observed

that the acceleration for each process is vary in different circuits. For example in

b19 circuit, we can accelerate the processes up to 63.9% for select− 1, 53.5% for

select−3, and 50.2% for select−5 respectively. One advantage of this acceleration

is that we can reduce testing cost in terms of computation time.
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Table 8. Computation Time for all Processes
Circuit Type Select-1 Select-3 Select-5 Previous

Selection 0.18 0.18 0.18 0
ATPG 0.19 0.33 0.37 1.29
Ordering 0.31 0.32 0.3 0.47
Total (m) 0.68 0.83 0.85 1.76
Acceleration (%) 61.4 52.8 51.7 0.0
Selection 1.49 1.49 1.49 0
ATPG 1.71 2.69 2.88 5.95
Ordering 0.86 1.06 1.14 1.7
Total (m) 4.06 5.24 5.51 7.65
Acceleration (%) 46.9 31.5 28.0 0.0
Selection 5.95 5.95 5.95 0
ATPG 7.59 8.88 9.59 27.08
Ordering 6.21 7.14 7.66 13.48
Total (m) 19.75 21.97 23.2 40.56
Acceleration (%) 51.3 45.8 42.8 0.0
Selection 11.75 11.75 11.75 0
ATPG 14.85 20.75 23.81 70.87
Ordering 17.27 23.99 25.01 50.7
Total (m) 43.87 56.49 60.57 121.57
Acceleration (%) 63.9 53.5 50.2 0.0

b19

b18

b15

b17
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Figure 14. Computation Time for different circuits
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5. Conclusions

Seed ordering and selection method based on exploiting the algebraic properties of

the pseudo-random pattern generator (PRPG) to increase the number of patterns

generated from one seed is an effective method to reduce the seed storage. In

terms of targeting SDDs, LFSR-reseeding BIST offers solution for test pattern

compression method. Other advantage is that we can apply some pseudo-random

patterns combines with deterministic patterns (mixed-mode BIST), more seeds

can be reduced and the patterns will increase the detection coverage of SDDs.

In this thesis seed ordering and selection method based on the gain in the

sum of the longest path lengths sensitized by seeds, which is correlated with

statistical delay quality level (SDQL) is applied. Experimental results show that

this method can obtain significant seed count reduction under several mixed-mode

BIST approaches, yet very time consuming, since it sensitizes large number of

long paths.

We proposed a hard-to-detect delay fault selection method to accelerate toe

computation time in seed ordering and selection process. This selection method

can be used to restrict faults for test generation when it is impractical to target

all delay faults that result in large test pattern count and long computation

time. Target faults are restricted based on the number of test patterns that

detect each faults for a given test set. We examine three types of hard-to-detect

fault selection method, select-1, select-3, and select-5, where select-n means the

faults detected at most n-times are selected. We use seed ordering and selection

method in previous work and evaluate the delay test quality based on SDQL in

deterministic and mixed-mode BIST environments.

Experimental results show that the proposed method significantly reduced

seed counts from 21% up to 67%. We evaluate the effectiveness of the proposed

method based on SDQL values, and found that the delay test quality is slightly

decreased. However, our method can obtain significant acceleration in computa-

tion time from 28% up to 63% for overall processes.
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