DAFTAR ISI

Lembar Pengesahan
Abstrak
Daftar Isi ... i
Daftar Tabel ... iv
Daftar Gambar ... vi
Daftar Notasi ... vii
Daftar Lampiran ... x
Kata Pengantar ... xi

BAB I PENDAHULUAN
1.1 Latar Belakang ... I-1
1.2 Tujuan dan Manfaat ... I-2
1.3 Batasan Masalah ... I-2
1.4 Spesifikasi Teknis .. I-3
1.5 Sistematika Penulisan ... I-4

BAB II TINJAUAN PUSTAKA
2.1 Tinjauan umum ... II-1
2.2 Perencanaan Awal .. II-1
2.2.1 Perencanaan Dimensi Sloof dan Balok II-1
2.2.2 Perencanaan Dimensi Pelat II-2
2.2.3 Perencanaan Dimensi Kolom II-4
2.3 Sistem Pembebanan ... II-4
2.3.1 Beban Vertikal .. II-4
2.3.2 Beban Horizontal ... II-4
2.4 Analisa Struktur .. II-7
2.5 Analisis dan Desain Balok .. II-7
2.5.1 Dasar Teori Perhitungan Tulangan Lentur Balok II-8
2.5.2 Dasar Teori Perhitungan Tulangan Geser Balok II-12
2.5.3 Dasar Teori Perhitungan Tulangan Torsi BalokII-15
2.5.4 Perhitungan Panjang PenyaluranII-18
2.6 Analisis dan Desain Kolom ...II-21
 2.6.1 Dasar Teori Perhitungan Tulangan Lentur KolomII-21
 2.6.2 Dasar Teori Perhitungan Tulangan Geser Kolom.....II-22
2.7 Analisis dan Desain Pelat ...II-24
2.8 Analisis dan Desain Dinding GeserII-28
2.9 Perencanaan Sloof ...II-29
 2.9.1 Pembebanan Sloof..II-30
 2.9.2 Penulangan Lentur SloofII-30
 2.9.3 Penulangan Geser SloofII-32
2.10 Perencanaan Pondasi ...II-34
 2.10.1 Desain Pondasi Bor ..II-34
 2.10.2 Perencanaan Dimensi Pile Cap..........................II-35
 2.10.3 Perencanaan Tulangan Lentur Pile Cap..............II-37
2.11 Rencana Anggaran Biaya ..II-37

BAB III PROSEDUR DAN HASIL PERHITUNGAN
3.1 Perencanaan Awal ..III-1
 3.1.1 Perencanaan Dimensi Sloof dan BalokIII-1
 3.1.2 Perencanaan Dimensi PelatIII-3
 3.1.3 Perencanaan Dimensi KolomIII-8
3.2 Analisis Pembebanan ..III-11
 3.2.1 Beban Bangunan ..III-11
 3.2.2 Analisa Pembebanan VertikalIII-12
3.3 Analisis Struktur ..III-13
3.4 Perencanaan Tulangan PelatIII-20
 3.4.1 Analisa Pembebanan ...III-21
 3.4.2 Perencanaan Pelat Dua ArahIII-21
 3.4.3 Perencanaan Pelat Satu ArahIII-31
3.5 Perencanaan Tulangan Balok..III-39
 3.5.1 Perencanaan Tulangan Lentur Balok..............................III-39
 3.5.2 Perencanaan Tulangan Geser Balok...............................III-48
 3.5.3 Perencanaan Tulangan Torsi Balok...............................III-52
 3.5.4 Perencanaan Panjang Penyaluran.................................III-57
3.6 Perencanaan Tulangan Kolom..III-59
 3.6.1 Perencanaan Tulangan Lentur Kolom.............................III-59
 3.6.2 Perencanaan Tulangan Geser Kolom..............................III-62
3.7 Perencanaan Dinding Geser..III-63
3.8 Perencanaan Tulangan Sloof..III-66
 3.8.1 Beban yang Bekerja pada SloofIII-66
 3.8.2 Perencanaan Tulangan Lentur Sloof.............................III-67
 3.8.3 Perencanaan Tulangan Geser Sloof..............................III-92
3.9 Perencanaan Pondasi ..III-74
 3.9.1 Daya Dukung Tiang ...III-75
 3.9.3 Perencanaan Tiang Group..III-75
 3.9.4 Perencanaan Dimensi Pile Cap...................................III-78
 3.9.5 Penulangan Lentur Pile Cap......................................III-79
3.10 Rencana Anggaran Biaya..III-82

BAB IV ANALISIS DAN PEMBAHASAN .. IV-1
BAB V KESIMPULAN ..V-1

Ucapan Terimakasih
Daftar Kepustakaan
Lampiran
DAFTAR TABEL

Tabel 2.1 Tebal minimum balok non-prategang bila lendutan tidak dihitung ...II-1
Tabel 2.2 Tebal minimum pelat satu arah jika lendutan tidak dihitungII-2
Tabel 2.3 Faktor Keutamaan, I untuk berbagai kategori gedung dan bangunan ...II-5
Tabel 2.4 Faktor daktilitas maksimum, faktor reduksi gempa maksimum, faktor tahanan lebih total beberapa jenis sistem dan subsistem struktur gedung ...II-5
Tabel 2.5 Panjang penyaluran batang ulir dan kawat ulirII-17
Tabel 3.1 Resume perencanaan dimensi sloof dan balokIII - 3
Tabel 3.2 Resume perencanaan dimensi pelat lantaiIII-7
Tabel 3.3 Resume perencanaan dimensi kolomIII-11
Tabel 3.4 Perencanaan Tulangan pelat dua arahIII-37
Tabel 3.5 Perencanaan Tulangan pelat satu arahIII-38
Tabel 3.6 Rekap perencanaan tulangan lentur balok lantai 1-3III-45
Tabel 3.7 Rekap perencanaan tulangan lentur balok lantai 4III-47
Tabel 3.8 Rekap perencanaan tulangan geser balokIII-51
Tabel 3.9 Rekap perencanaan tulangan torsi balokIII-56
Tabel 3.10 Perencanaan panjang penyaluran pada balokIII-58
Tabel 3.11 Rekap perencanaan lentur kolomIII-61
Tabel 3.12 Rekap perencanaan geser kolomIII-62
Tabel 3.13 Rekap perencanaan tulangan lentur sloofIII-70
Tabel 4.1 Data penulangan balok hasil desain ulangIV-1
Tabel 4.2 Data penulangan balok yang ada di proyekIV-1
Tabel 4.3 Data penulangan kolom hasil desain ulangIV-1
Tabel 4.4 Data penulangan kolom yang ada di proyekIV-1
Tabel 4.5 Perbandingan penulangan pelat hasil desain ulang dengan data di lapangan ... IV-2
Tabel 4.6 Data perbedaan penulangan dinding geser hasil desain ulang dengan data di proyek ... IV-2
DAFTAR GAMBAR

Gambar 1.1 Wilayah Gempa Indonesia dengan percepatan puncak batuan dasar dengan perioda ulang 500 tahun I-1
Gambar 1.2 Desain perencanaan gedung Pasar Raya Padang Blok I I-2
Gambar 2.1 Diagram tegangan-regangan pada balok tulangan rangkap......II-8
Gambar 2.2 Lokasi geser maksimum ..II-11
Gambar 2.3 (a) Sengkang vertikal dan (b) Sengkang tertutup.................II-12
Gambar 2.4 Bentuk distribusi tegangan tors pada balokII-13
Gambar 2.5 Acp dan Pcp adalah daerah yang diarsirII-14
Gambar 2.6 Defenisi dari Aoh = luas dari daerah yang diarsirII-15
Gambar 2.7 (a) Sengkang horizontal dan (b) Sengkang tertutup.............II-19
Gambar 2.8 Dimensi pelat dan pembebanan merata pelat....................II-23
Gambar 2.9 Diagram tegangan – regangan yang terjadi pada sloofII-28
Gambar 2.10 (a) Sengkang vertikal dan (b) Sengkang tertutup...............II-31
Gambar 3.1 Denah pelat...III-3
Gambar 3.2 Penampang balok induk interior pelatIII-4
Gambar 3.3 Penampang balok anak interior pelat...............................III-6
Gambar 3.4 Tab Structure Option ..III-14
Gambar 3.5 Tab Analysis Option ...III-14
Gambar 3.6 Tab Load Cases and Load Combination ParametersIII-15
Gambar 3.7 Tab Section Properties Data ..III-15
Gambar 3.8 Tab Design Properties Data ..III-16
Gambar 3.9 Tab Floor Slab Data ...III-16
Gambar 3.10 Tab Basic Data ..III-18
Gambar 3.11 Tab Earthquake Codes ..III-18
Gambar 3.12 Tab Export SANS Data ...III-19
Gambar 3.13 Tab Analysis ...III-19
Gambar 3.14 Penampang pelat tipe 1 ...II-22
Gambar 3.15 Penampang pelat tipe 7 ...II-31
Gambar 3.16 Luas daerah yang diarsir = A_{oh} .. II-53
DAFTAR NOTASI

Agr : Luas penampang kolom
Acp : Luas penampang balok yang monolit dengan pelat
Aoh : Luas penampang didalam sengkang
Ap : Luas penampang ujung tiang pondasi
As : Luas penampang tulangan tarik
As' : Luas penampang tulangan tekan
As : Luas sisi tiang pondasi
Av : Luas bruto penampang elemen struktur
b : Lebar penampang
bc : Lebar efektif balok
bw : Lebar badan balok
D : Diameter tiang
DL : Beban mati
d : Tinggi efektif penampang
E : Beban Gempa
f'_c : Kuat tekan karakteristik beton
fy : Tegangan ultimate baja tulangan
g : Percepatan gravitasi
hf : Tinggi sayap balok pelat
hw : Tinggi badan balok pelat
ld : Panjang penyaluran
l_db: Panjang penyaluran dasar
ln : Panjang bentang bersih balok
Ip : Inersia balok pelat
Ip : Inersia pelat
L : Panjang bentang
LL : Beban hidup
Mn : Momen nominal penampang
Mu : Momen ultimate kolom
m : Jumlah baris tiang
N : Jumlah tiang pondasi
n : Jumlah tiang dalam satu baris
Pcp : Keliling penampang balok yang monolit dengan pelat
Pu : Beban aksial ultimate
Qp : Daya dukung ujung
Qs : Daya dukung sisi
q : Beban merata akibat beban mati dan beban hidup
qc : Nilai perlawanan konus
Rn : Koefisien ketahanan momen
s : Jarak antar tulangan
T1 : Waktu getar alami fundamental
Tu : Momen torsi berfaktor pada balok
Tc : Kuat momen torsi nominal yang disumbangkan beton
U : Koefisien momen yang ditentukan berdasarkan pada perbandingan \((l_y/l_x)\) dari pelat dan kondisi tumpuannya
Vu : Gaya geser ultimate
Vn : Gaya geser nominal yang dihitung
Vs : Gaya geser nominal yang disumbangkan oleh tulangan geser
Vc : Gaya geser nominal yang disumbangkan oleh beton
Wt : Berat total bangunan
\(\alpha\) : Kekakuan pelat
\(\beta \): Perbandingan antara bentang bersih sisi terpanjang dengan bentang bersih terpendek

\(\beta_1 \): konstanta yang merupakan fungsi dari kelas kuat beton

\(\eta \): Efisiensi tiang grup

\(\rho \): Rasio tulangan

\(\rho_h \): keliling dari garis pusat tulangan torsi terluar

\(\gamma \): Faktor ukuran batang tulangan

\(\lambda \): Faktor beton agregat ringan

\(\rho_b \): Nilai \(\rho \) yang mengakibatkan keruntuhan tekan dan tarik terjadi secara bersamaan

\(\phi_o \): Faktor penambahan kekuatan

\(\Phi \): Faktor reduksi kekuatan
DAFTAR LAMPIRAN

Lampiran 1 Data Hasil Analisis Dinamis
Lampiran 2 Denah Struktur Gedung
Lampiran 3 Gambar Detail Struktur
Lampiran 4 Rencana Anggaran Biaya
Lampiran 5 Daftar Harga Satuan Pekerjaan
KATA PENGANTAR

Proyek akhir ini berisikan perencanaan bangunan gedung Pasar Raya Padang Blok I, yang meliputi perencanaan struktur atas dan struktur bawah, serta perhitungan anggaran biaya untuk struktur atas dan struktur bawah.

Penulis menyadari, bahwa dalam penulisan ini masih jauh dari kesempurnaan. Untuk itu penulis mengharapkan kritik dan saran yang membangun untuk perbaikan proyek akhir ini.

Akhir kata penulis berharap agar penulisan proyek akhir ini bermanfaat. Terima kasih.

Padang, September 2011

Penulis