BIOSINTESIS DAN MEKANISME KERJA HORMON REPRODUKSI WANITA

Kuliah 3

Rahmatina B. Herman

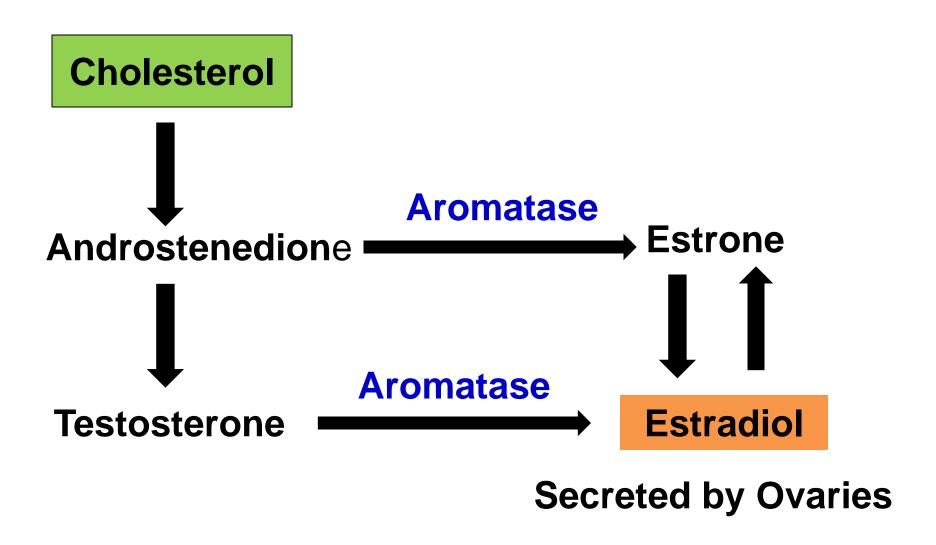
Bagian Fisiologi

Fakultas Kedokteran Universitas Andalas

Ovarian Sex Hormones

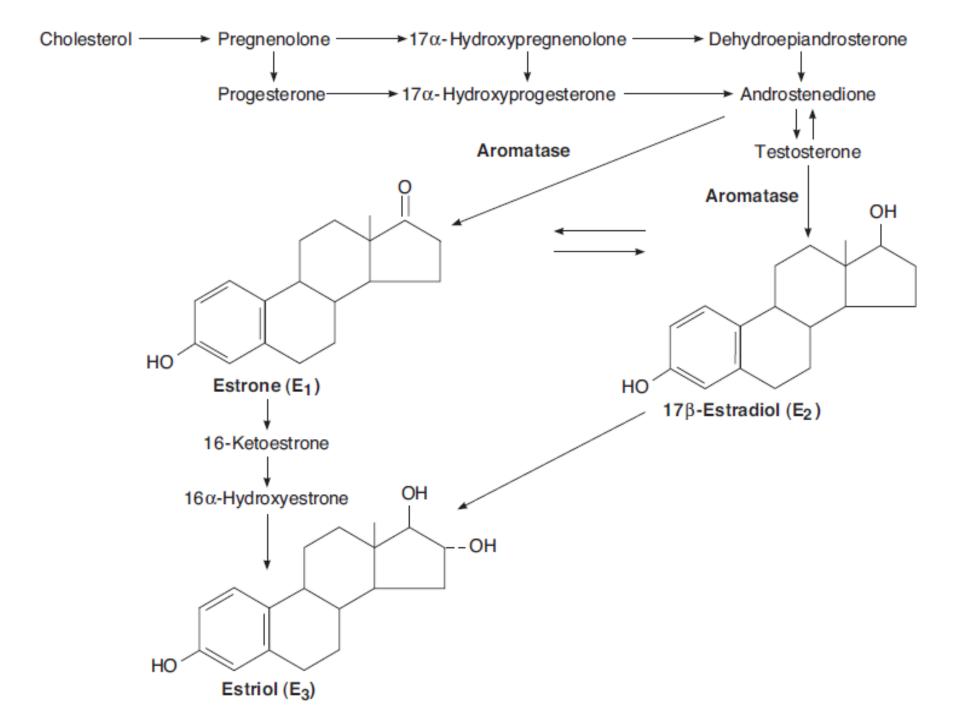
- Types of ovarian sex hormones:
 - 1. Estrogens
 The most important of estrogens is estradiol
 - 2. Progestins
 The most important of progestins is progesterone
- Production:
 - > Non-pregnant: by ovaries
 - adrenal cortices
 - > Pregnancy: by ovaries
 - placenta
 - adrenal cortices

Ovarian Sex Hormones.....


- Transport to target organ:
 - > Loosely bound with plasma albumin
 - > More tightly bound with a beta globulin: sex hormonebinding globulin
 - specific estrogen-binding globulin
 - specific progesterone-binding globulin
- Mechanism of action:
 - > Location of receptors:
 - Cell interior
 - > Signal transduction mechanism:
 - Receptors directly alter gene transcription
 - > Only free hormone can diffuse across capillary walls and encounter its target cells

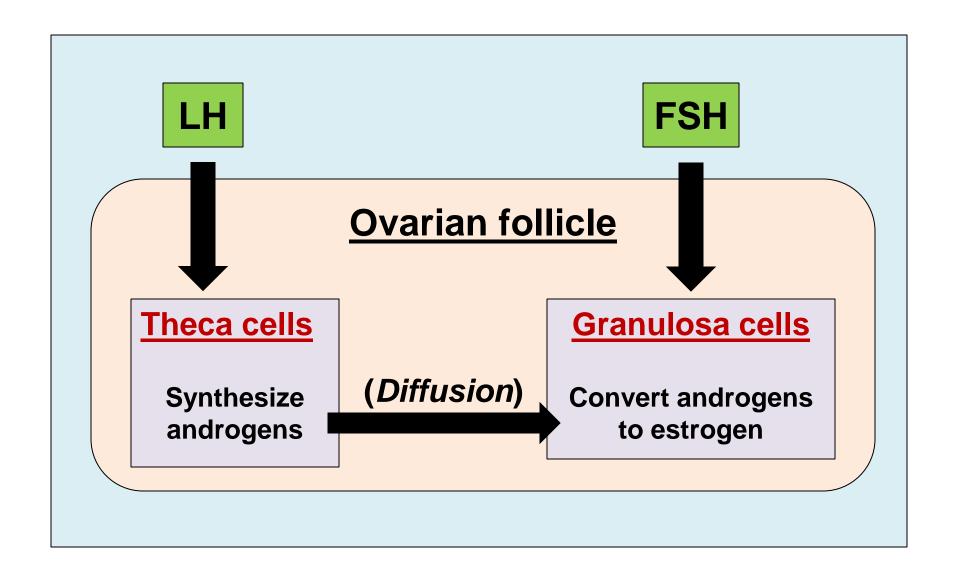
ESTROGENS

Types of Estrogens


- Beta-estradiol (17β-estradiol):
 - major estrogen
 - synthesized by ovaries
 - strength: 12x estrone and 80x estriol
- Estrone
 - by adrenal cortices, ovaries, and some other tissues
- Estriol
 - oxidative product from estradiol and estrone
 - by liver

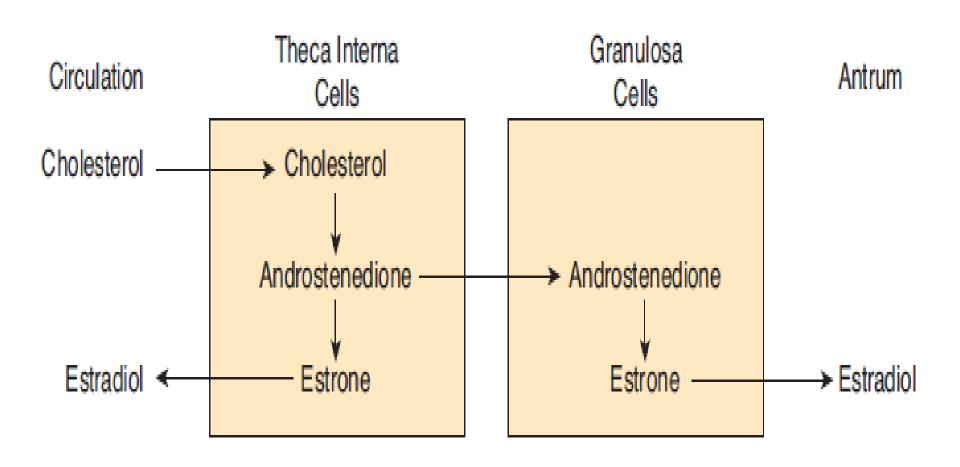
Synthesis

Synthesis.....

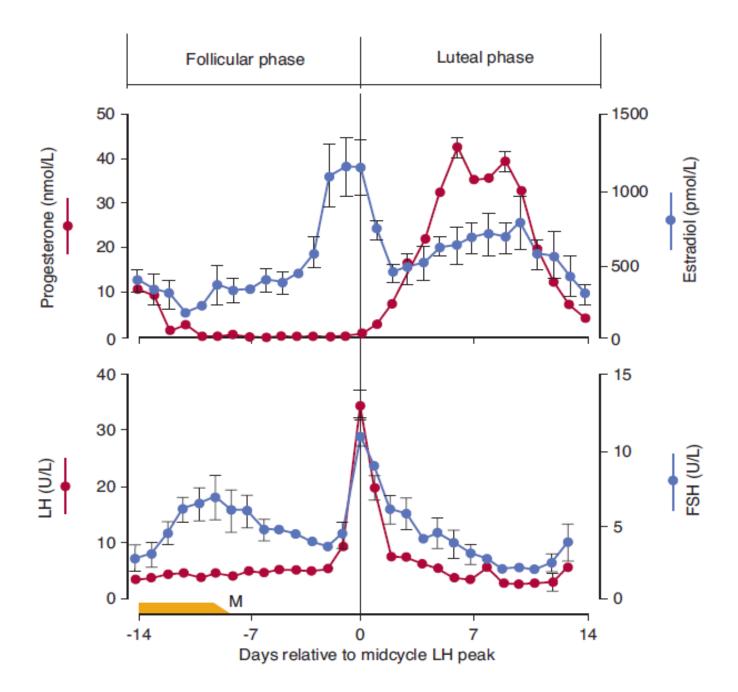

- The naturally estrogens (17β-estradiol, estrone, and estradiol) are C18 steroids
- The biosynthesis of estrogens depends on the enzyme aromatase (CYP19), which converts testosterone to estradiol and androstenedione to estrone
- The reaction of converting androstenedione to estrone also occurs in:
 - fat
 - liver
 - muscle
 - brain

Synthesis by Ovaries

- Estrogen is synthesized and released into blood
 - during follicular phase mainly by granulosa cells
 - after ovulation by corpus luteum
 - during pregnancy by placenta
- Granulosa cells require help to produce estrogen because they are deficient in the enzymes required to produce androgens that are the precursors of estrogen
- They are aided by theca cells
- Requires interplay of both types of follicle cells and both pituitary gonadotropins (FSH and LH)


Synthesis by Ovaries.....

Synthesis by Ovaries.....


- Theca interna cells have many LH receptors
- LH acts via cAMP to increase conversion of cholesterol to androstenedione
- Theca interna cells supply androstenedione to granulosa cells
- Estradiol produced by granulosa cells when provided with androgen and secreted into follicular fluid
- Granulosa cells have many FSH receptors
- FSH facilitates the secretion of estradiol by acting via cAMP to increase aromatase activity
- Mature granulosa cells also require LH receptors

Synthesis by Ovaries.....

Secretion

- Concentration of estradiol in plasma during menstrual cycle is depend on menstrual phase
- Almost of this estrogen comes from ovary
- Two peaks of secretion occur: one just before ovulation and one during the midluteal phase
- Estradiol secretion rate is:
 - 36 μg/d in the early follicular phase
 - 380 μg/d just before ovulation
 - 250 μg/d during midluteal phase
- After menopause estrogen secretion declines to low levels

Transport and Metabolism

- Circulating estradiol: 2% is free, 60% is bound to albumin and 38% is bound to sex hormone-binding globulin /gonadal steroid-binding globulin (specific estrogen-binding globulin)
- Metabolism by liver:
 - conjugated → glucoronide and sulfate
 - excreted: most in urine
 - in the bile (1/5) → enterohepatic
 circulation
 - estradiol & estrone → estriol (weak impotent)
 - diminished liver function → hyperestrinism

Distribution of gonadal steroids and cortisol in plasma

		% Bound to		
Steroid	% Free	CBG	GBG	Albumin
Testosterone	2	0	65	33
Androstenedione	7	0	8	85
Estradiol	2	0	38	60
Progesterone	2	18	0	80
Cortisol	4	90	0	6

CBG, corticosteroid-binding globulin; GBG, gonadal steroid-binding globulin.

Effects of Estrogen

- 3 Basic mechanisms of estrogen's effects on target organs/ cells
 - Promote proliferation and growth specific cell
 - Development of primary sex characteristic
 - Development of most secondary sex characteristics
- Non reproductive effects
 - Promotes fat deposition
 - Increases bone density
 - Closes epiphyseal plates

Effects of Estrogen.....

On Sex-specific tissues

- Essential for egg maturation and release
- Stimulates growth and maintenance of entire female reproductive tract
- Stimulates granulosa cell proliferation which lead to follicle maturation
- Thins cervical mucus to permit sperm penetration
- Enhances transport of sperm by stimulating upward contractions of uterus and oviduct
- Stimulates growth of endometrium and myometrium

Effects of Estrogen.....

- Induces synthesis of endometrial progesterone receptors
- Triggers onset of parturition by increasing uterine responsiveness to oxytocin during late gestation through a twofold effect by
 - inducing synthesis of myometrial oxytocin receptors
 - increasing myometrial gap junctions so that uterus can contract as a coordinated unit in response to oxytocin

Effects of Estrogen.....

Other reproductive effects

- Promotes development of secondary sexual characteristics
- Controls GnRH and gonadotropin secretion:
 - Low levels: inhibit secretion
 - High levels responsible for triggering LH surge
- Stimulates duct development in breasts during gestation
- Inhibits milk secreting action of prolactin during gestation

Effects of Estrogen After Puberty

On uterus & external sex organ:

- Increase the size
- External genitalia enlarge with deposition of fat
- Change vaginal epithelium from cuboidal → stratified
- Endometrium changes:
 - > proliferation of the stroma
 - > greatly increased development of endometrial glands

On Fallopian tube:

- Proliferation of glandular tissue
- Increase the number of ciliated epithelial cell
- Enhance the activity of the cilia

Effects of Estrogen After Puberty.....

On breast:

- Development of the stromal tissue
- Growth of an extensive ductile system
- Deposition of fat
- Develop lobules and alveoli (initiate growth)
- Characteristic growth and external appearance of the mature female breast
- On metabolism:
 - Increase metabolic rate (1/3 of testosterone)
- On electrolyte balance: Na retention
 - Slight and rarely significance, except in pregnancy

Effects of Estrogen After Puberty.....

- On protein deposition:
 - Slight increase in total body protein
- On fat deposition:
 - Increase quantities of fat in subcutaneous tissue → decreased specific gravity → flotation in water
- On skin:
 - Develop texture which is soft and smooth
 - Thicker than children and more vascular
 - Increase secretion of axillary sweat gland → acne (by adrenal androgen)
- On hair distribution:
 - No greatly effect (opposite to testosterone)

Effects of Estrogen After Puberty.....

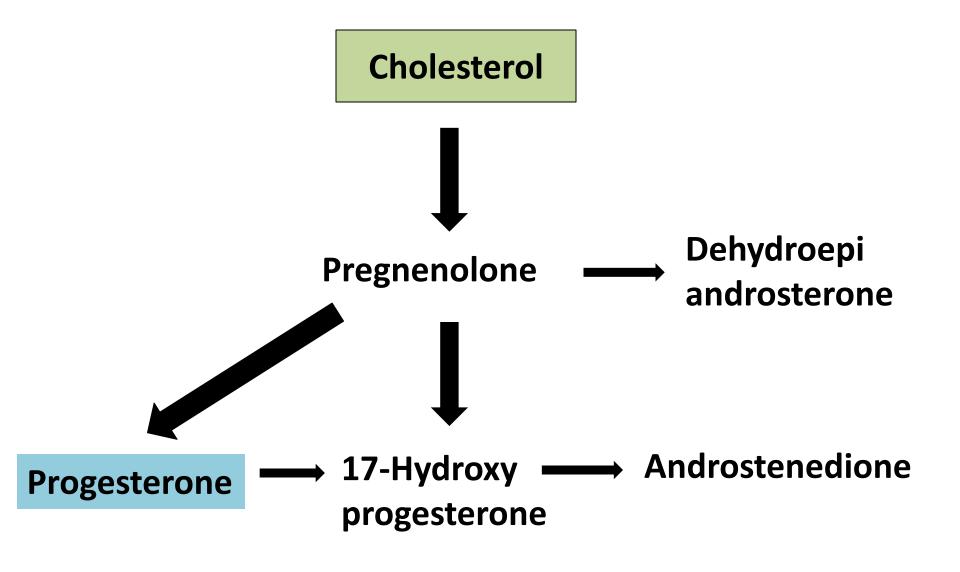
On skeleton:

- Increase osteoblastic activity → growth
- Early uniting of the epiphyses with the shafts of long bone (stronger than testosterone)

Osteoporosis caused by estrogen deficiency:

- Diminished osteoblastic activity
- Decreased bone matrix
- Decreased deposition of Ca & Phosphate

On central nervous system


- Increase libido in humans and estrous behavior in animals by direct effect on neurons in hypothalamus
- Increase proliferation of dendrites on neurons in rats

Mechanism of Action

- Intracellular function:
 - circulate in blood only a few minutes → target cells
 - combine with receptor protein in cytoplasm
 - `
 - activate specific portions of chromosomal DNA
 - initiate transcription process → DNA RNA →
 - > division of cell
 - > protein formation → in a few specific target organs

PROGESTIN

Synthesis

Synthesis

- The most important type of progestin is progesterone
- Progesterone is C21 steroid
- Progesterone is synthesized and released into blood
 - > by ovaries:
 - major source is CL (after ovulation)
 - In very small amounts by granulosa and theca cells just before ovulation
 - placenta
 - > in small amount by cortex adrenal

Sodium pregnanediol-20-glucuronide

Secretion

- Concentration of progesterone in plasma during menstrual cycle is depend on menstrual phase
- Progesterone secretion rate is 0.9 ng/ml during the follicular phase, and late in follicular phase, progesterone secretion begins to increase
- During luteal phase, corpus luteum produces large quantities → plasma concentration markedly increased to a peak value of approximately 18 ng/ml
- Stimulating effect of LH is due to activation of adenylyl cyclase and involves subsequent step that is dependent on protein synthesis

Transport and Metabolism

- Circulating progesterone: 2% is free, 80% is bound to albumin and 18% is bound to sex hormonebinding globulin /corticosteroid-binding globulin (specific progesterone-binding globulin)
- Progesterone has a short half-life
- Converted in liver to pregnanediol, which is conjugated to glucuronic acid
- Excreted in the urine

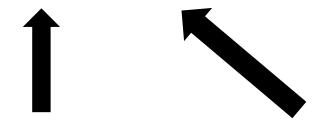
Effects of Progesterone

- Final preparation of the uterus for pregnancy
 - Prepares a suitable environment of a developing embryo/ fetus
 - Promotes formation of a thick mucus plug in cervical canal
 - Inhibits uterine contractions during gestation
- Final preparation of the breast for lactation
 - Stimulates alveolar development in breasts during gestation
 - Inhibits milk-secreting action of prolactin during gestation
- Inhibits hypothalamic GnRH and gonadotropin secretion

Effects of Progesterone After Puberty

On uterus:

- promote secretory change during the latter half of cycle → preparing for implantation
- decrease frequency and intensity of uterine contraction → prevent expulsion of implanted ovum


On Fallopian tube:

promote secretory change → nutrition for fertilized ovum

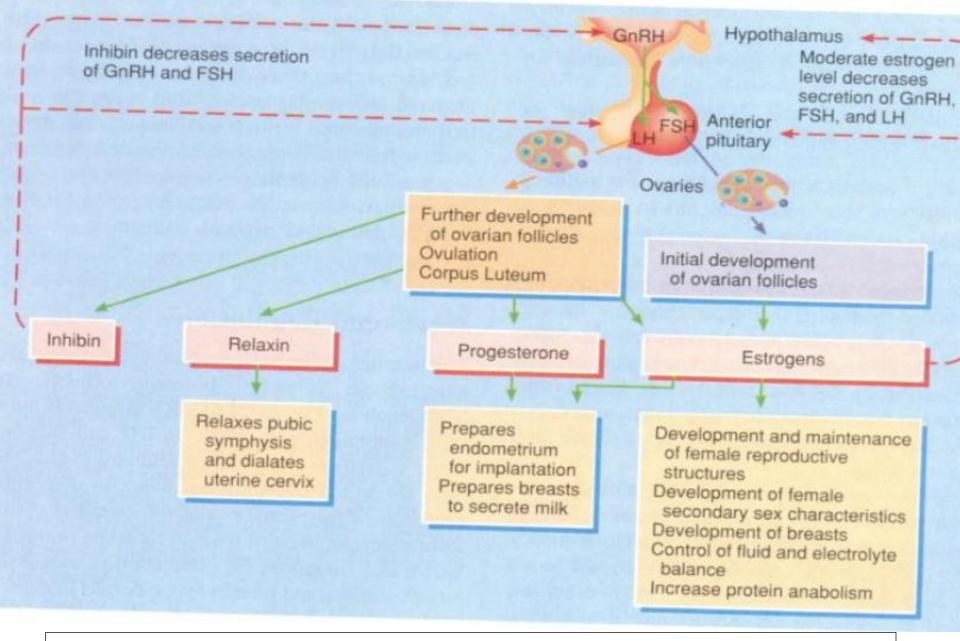
Effects of Progesterone After Puberty.....

On breast:

- Development of lobules and alveoli
- Proliferate, enlarge, to become secretory of alveolar cells
- Cause breast swell

development in lobules and alveoli

Increase fluid in subcutaneous tissue


Effects of Progesterone After Puberty.....

- On electrolyte balance:
 - In large quantity: Na retention (less than aldosterone)
 - More often: increased Na and water excretion

Competition with aldosterone for binding with receptor so that effect of aldosterone on Na retention is blocked with net results increased Na excretion

Mechanism of Action

- The effects of progesterone, like those of other steroids are brought about by an action on DNA to initiate synthesis of RNA
- Progesterone receptor is bound to a heat shock protein
- The synthetic steroid mifepristone binds to the receptor but does not release the heat shock protein, and it blocks the binding of progesterone
- Mifepristone combined with prostaglandin can be used to produce elective abortions

Secretion and physiological effects of estrogen, progesterone, relaxin, and inhibin

Thank You

Tugas

Anatomy-Physiology of Ovaries:

- Immature follicle
- Mature follicle
- Theca cells
- Granulosa cells
- Corpus Luteum