Pemeriksaan Kadar Oksalat dalam Daun Singkong (Manihor uillissima Pohl) dengan Metoda Spektrofotometri Kinetik

Mardius Syarif, Harrizul Rivai dan Faizal Fahmi
Fakultas Farmasi Universilas Andalas

Diterima tanggal ; 07 Februari 2007 disetujui : 26 Maret 2007

Abstract

Abstrnct Determination of oxalate in cassava leaves (Monihor allissima Pohl) by kinetic spectrophotometric method at wavelength 352 mm has been tarried out. This method able to determinc oxalate at concentration range of 10 $15 \mu \mathrm{~g} / \mathrm{ml}$. The method possessed the detection limit $4.225 \mu \mathrm{~g} / \mathrm{ml}$ and quartitation limit $14.084 \mu \mathrm{~g} / \mathrm{ml}$ the recovery 99.96%, standar of deviation 0.058 and coefficient of variance 0.302%, respectively. Result of oxalate determination was $17.11 \mathrm{mg} / \mathrm{g}$ on fresh leaves and $57.73 \mathrm{mg} / \mathrm{g}$ on dry leaves.

Keywords : oxalate, Manihor utilizsima Pohl, kinetic spectrophotometric method

Pendabuluan

Sayuran banyak mengandung vitamin A, B, C, mineral dan kulsjum, serta banyak mengandung kalori, protein, lemak dan karbobidrat (Smith, 1992). Selain mengandang gizi, sayuran juga mengandung zat anti gizi yarg salah satunya oksalat. Oksalat yang terdapat dalam berlagai jenis sayuran dan buah-buahan ternyata menimbulkan masalah dalam penyerapan kalsium (Deddy, 1993). Oksalat dapat mengendapkar kalsium dan membentuk kalsium oksalat yang tidak dapat diserap oleh tubuh, sehingga terbentuk endapan garam yang tidak dapat larut yang menyebabkan muncuhya penyakit batu ginjal. Oksatat sering ditemukan dalam berbagai macam sayuran seperti bayam, jamur, kacang-kacangan dan belimbing (Winarno, 1997).

Pengikatan kalsium yang terjadi di dalam tubah dapat meayekabkan hilngnya kalsium sehingga mengeunggu aktiffas elektrik jantung, ofot-otot dan syaraf. Disamping itu asam oksalat juga dapat merghambet penyerapan zat besi sehingga mempersulit penyerapennya, padahal zat tesi merupakan komponen yang sangat diperlukan oieh tabuh. Kekurangan zat besi dapat menyebabkan seseorang menderita anemia dan gangguan pada pertumbuhan (Weafer, 1997),

Dalam penelitian ini telah ditentukan kudar of salat dari daun singkong (Afanikot asilissima Pobll) yang sering diokonsumsi oleh masayarakat. Hasil penclitian ini bermanfaat sebagai informasi bagi arang yang memerlukan det rendah oksalat. Kadar eksalat ditentukan dengan metode spektroforometri kinetik. Metoda ini didasarkan pada perubahan absorban dan l_{2} yang dihasilkan dari reaksi iodida
dan bromat dengan menggunakan kalatis besi (II). Oksalat delam hal ini betindak sebagai aktivator. Perubahan dati triodida (I_{3}) pada panjang gelombang 352 nm sebanding dengan konsentrasi oksala1. Pengukuran dilakukan pada waktu 0,5 menit dan 4 menit (Chamjangali, 2006).

Metadologi Penclitian

Alat don Bahan
Spektrofotometer UV Mini Shimadzu 1240, lumpang dan alu, alat-alat gelis, timbangen analitik (Ohaus), pH meter, termomeler, stopwatch, sentrifuge.
Daun singkong segar, besi (II) ammonium sulfat pa (Merck), asam sulfat pa (Merck), kaljum iodida pa (Merck), asam asetat pa (Merck), natrium asetat po (Merck), natrium oksalat pa (Merck).
Pembiatan laruian sampel (Chanjiangali, 2006)
Ambil daun muda dari singkong (pucuknya), dicuci dengan air dan ditiriskan, kemudian dipotong kecilkecil dan ditimbang 2,5 gram. Digerus dalamt lumpang sampai tertentuk pasta. Pasta tersebut dimasukkan ke dalam labu rellu dan ditantah dengan aquabidestlat sebanyak 250 ml , didihkan selamn 20 mentit, dinginkan, sentrifus peda 1700 ipm selama 15 menit kenudiart disuring dengan kerlas saring whatman No. 1 ke dalam labu 500 ml . Filtrat yang diperoleh ditambah aqua bidestilata sampai tanda batas.

Pembliatar kurva kalibrasi (Chamjangall, 2006)

Seluruh reagen dan larutan stardar yang telah disiapkan dimasukan dalam pengas air dengan suhu $20^{\circ} \mathrm{C}$ selama 30 menit sebelum digunakan. Pipet Jarutarn standar oksalat: $100 \mu \mathrm{~g} / \mathrm{ml}$ masing-masing sebanyak $0 ; 0,1 ; 0,2,0,3 ; 0,4$ dan $0,5 \mathrm{ml}$, Jalu masukan dalam laba 10 ml . Ke dalam masing-
masingrya tambahkan 2 ml larutan buffer aselat (pl 15), 1 ml Fe (II) $7 \mu \mathrm{~g} / \mathrm{ml}, 1 \mathrm{ml} \mathrm{K1} 0,12 \mathrm{~mol} / \mathrm{L}, 1$ ml larutan kaliunt bromat 0,1 mol dan teakhir enceekan dengan aquabidestilata sampai betas.
Absorbannya diukur peda panjang gelombang 352 nm . Serapar perlamanya pada waktu 0,5 menit dan kemudiar pada 4 menit sehingga $\Delta A s=A 4-$ A0,5. Pengukuran absorban tanpa ada oksolat dilakukan tantuk mendapatkan perubahan absorban reaksi yung terjadidiaktivasi oleh oksalat (A Ab). Sinyal analitik $=\Delta A s-\Delta A b$.

Penguburan kadar oksalat pada sanpel C

Pipet larutan sampel yang telah disiapkan sebanyak 2 ml dan masukkan pada labu 10 ml . Lakukan perambohan reagen dan pengukuran absorban sama dengan perlakuan pada pembaatan kurva kalibrasi. Kadar oksalat dalam sampel dihitung melalui persamaan regresi dari kurva kalibrasi (Chamjangall, 2006). Selanjutnya dilakukan validasi metoda amalisis melalui penentuan kelepalan metoda (accuracy) yang dinyatakan sebagai perolehan kembali (recovery) dan peneatuan ketclitian metoda (precision) (Sukandar, 1997).

Hasil dan Diskusi

Sampel dara rengen yang telah disiapkan dimassikkan dalam tangas air selama 30 menit den diatur suhu $20^{\circ} \mathrm{C}$ supilya reaksi berjalan lamba sehingga daput dilibat perubahannya pada spektrofotometer. Reaksi yang lerjadi adalah :

$$
\mathrm{KBrO}_{2}+\mathrm{Kl}+6 \mathrm{OH}^{+} \underset{\text { Oksalat }}{\stackrel{\mathrm{Fe}(\mathrm{II})}{\rightleftarrows}} \mathrm{r}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

Earutan besi(II) bertindak sebagni katalis darn oksalat sebagai activator (pengaktivasi reaksi) dan 1 ', merupakan hasil reaksi yang sebanding jumbanya dengan konsenirasi oksalat.

Dari pembuatan kurva kalibrasi didapatkan persamaar regresi $y-0.0163+0.0088 \times$, dengun harga koclisiea korelasi $(\Omega)=0,9978$. Hasil ini menunjukkan korelasi yang erat yang menyalakan hubungan absorban dengan konsentrasi. Dari kurva kalibrasi didapatkan batas deteksi $-4,2254$ dan batas kuantisasi $14,084 \mu \mathrm{~g} / \mathrm{ml}$, Dari persamaan regresi didapakan koasentrasi larutan sampel, schingga didapatkan kadar oksalat dalans daun singkong 17,1098 mg/g dengan standar deviasi 0,0537 dan koctisien variasi $0,3138 \%$. Juga dilakukan perentuan kadar air disri daun singkong yaitu $70,36 \%$ hingea didapat kadar oksalat dalam caun kering $53,725 \mathrm{mg}$ g dengan slandar deviasi 0,181 dan koefisien variasi $0,314 \%$, Validasi metoda analisis dilakukan untuk menjamin tehwa metoda spekizofotometri kinetik yang digumakan mampa memberikan hasil yang cermat dimana hasi! perolehan kembali (recovery) $100,32 \%$ dan $99,60 \%$. Ketelitian diukur sebagai standar deviasi dan koefisien variasi dari masing-masing pengukuran dimana ditemekan standar deviasi 0,0579 dan koelisien variasi $0,302 \%$

Takel t. Hasil Pengukuran dan Perubekan Absortaan pada absorbsi maksimum 352 nm dalam Pembaatan Kurva Kalibrasi Larutan Standar ksalat dengan Metoda Spektrofotometri Kiretik

No	Kosentrasi Slandar Oksalat (wml)	$\text { Absorban } 0,5$ menit	Absomban 4 menil	Perubahan A $\begin{gathered} \text { A.s. } \\ 4-0,5 \end{gathered}$	$\Delta A s-$ $\triangle A b$	Rata-rata
1	0	$\begin{aligned} & 0.1014 \\ & 0.1038 \\ & 0.1125 \end{aligned}$	$\begin{aligned} & 0.3261 \\ & 0.3302 \\ & 0.3342 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2247 \\ & 0.2264 \\ & 0.2217 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	0
2	10	$\begin{aligned} & 0.1242 \\ & 0.1378 \\ & 0.1260 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4620 \\ & 0.4795 \\ & 0.4697 \end{aligned}$	$\begin{aligned} & 0.3378 \\ & 0.3417 \\ & 0.3437 \end{aligned}$	0.1131 0.1153 0.1220	0.1168
3	20	$\begin{aligned} & 0.1439 \\ & 0.1395 \\ & 0.1470 \end{aligned}$	$\begin{aligned} & 0.5677 \\ & 0.5703 \\ & 0.5694 \end{aligned}$	$\begin{aligned} & 0.4238 \\ & 0.4308 \\ & 0.4224 \end{aligned}$	$\begin{aligned} & 0.1991 \\ & 0.2044 \\ & 0.2007 \end{aligned}$	0.2014
4	30	$\begin{aligned} & 0.1540 \\ & 0.1602 \\ & 0.1635 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6629 \\ & 0.6673 \\ & 0.6748 \end{aligned}$	$\begin{aligned} & 0.5089 \\ & 0.5071 \\ & 0.5113 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2842 \\ & 0.2807 \\ & 0.2896 \end{aligned}$	0.2848
5	40	$\begin{aligned} & 0.1803 \\ & 0.1764 \\ & 0.1852 \end{aligned}$	$\begin{aligned} & 0.7850 \\ & 0.7743 \\ & 0.7759 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6047 \\ & 0.5979 \\ & 0.5907 \end{aligned}$	$\begin{aligned} & 0.3800 \\ & 0.3715 \\ & 0.3690 \end{aligned}$	0.3735
6	50	$\begin{array}{r} 0.2070 \\ 0.2110 \\ 0.2058 \\ \hline \end{array}$	$\begin{aligned} & 0.8836 \\ & 0.8814 \\ & 0.8769 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6766 \\ & 0.6704 \\ & 0.6711 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4519 \\ & 0.4440 \\ & 0.4494 \end{aligned}$	0.4484

Gambar 1. Kurva kalibrasi larutan standar natrium oksalat
peda panjang gelombang 352 um dengan metoda spektrofotometri kinetik

Kesimpulan

Dari hasil pemeriksean kadar oksulat dalam diun singkong (Manihar milissima Pohl) dengan metoda spektrofotometri kinetik ditemakan $17,11 \mathrm{mg} / \mathrm{g}$ pada daun segar atau $57,73 \mathrm{mg} / \mathrm{g}$ pada daun kering.

Daftar Pustaka

Chamjangali, M.A., V. Keley and G. Baglerian, Kinetic Spectrophotometric Method fer the Determination of Trace Amounts of Oxalate by an Activation Effech, Anolytical Sciences, The Japen Society for Analitycal Chemistry, 2006.

Deddy, M., Metabolisme Zat Gizi Sumber, Fungsi dan Kebutuhan Bagi Tubuh Manusia, Jilid II, Pustaka Sinar Harapan, Jakarla, 1993.

Smith, E.Y., Terapi Sayuran, Prestasi Pustaka, Jakarta, 1992.
Sukandar, E.Y, dan Kusmadiyanti S., Pengguraan Statistika dalam Validasi Metoda Amalitik dan Penerapannya, Prosiding Temu Ilmiah Nasional Bidang Farmasi, Vol. 1 Jurusan Farmasi Fakultas MIPA, ITB, Bandeng, 1997.
Weafer, C.M., R.P. Heaney, K.P. Nickel, P.t. Poelard, Calcium Bicavailability from High Oxalate Vegetables: Chinese Vegetables, Sweet Potatos and Rhubard, Juraal of Food Science, $62(3), 524-525,1997$.
Winamo, F.G., Kimia Pangan dan Gizi, PT. Gramedia Pustakit Utama, Jakarta, 1997.

