EFKETIVITAS CAMPURAN Bacillus thuringiensis dan Beauveria bassiana TERHADAP HAMA Crocidolomia binotalis Zell. PADA TANAMAN KUBIS

(Effectivity of Combinations of Bacillus thuringiensis and Beauveria bassiana on Crocidolomia binotalis pest on Cabbage)

Trizelia*

ABSTRACT

An experiment on the effectivity of combinations of Bacillus thuringiensis and Beauveria bassiana on Crocidolomia binotalis Zell, pest on Cabbage was conducted at the Field Laboratory of Department of Agriculture for Estate Crops West Sumatera, from May 1997 to January 1998. This research aims to study the pathogenicity of B. thuringiensis and B. bassiana singly or combination on C. binotalis larvae. The experiment was arranged to Completely Randomized Design (CRD) that consisted of two factors and four replicates. First factor (A) contained five concentration of B. thuringiensis (Fiberbac FC) i.e. 0, 0.05, 0.10, 0.15 and 0.20 percent. Second factor (B) contained five concentration of conidia of B. bassiana i.e. 0, 10, 10², 10³, and 10⁴ conidia/ml. The result of the experiment shows that B. thuringiensis and B. bassiana was able to kill the C. binotalis larvae. The higher the concentration of these pathogens given the higher the mortality of larvae. The combination of this pathogen had significant interaction effect on mortality of larvae, pupae and adults.

PENDAHULUAN

Crocidolomia binotalis Zell, merupakan salah satu jenis hama yang menimbulkan masalah penting pada pertanaman kubis. Serangan ini diakibatkan juga oleh hama yang sangat raksas dan secara berkelanjutan dapat menghabiskan semua daun dan hanya meninggalkan tulang daun saja. Kerusakan yang diimbulkan dapat menurunkan hasil sampai 100%.

Untuk mengendalikan hama C. binotalis, berbagai usaha dapat dilakukan yaitu secara mekanis dengan mengumpulkan kelompok telur dan larva dengan tangan, penggunaan tanaman resisten, secara kimia, pengendalian hayati (Badan Penelitian dan Pengembangan Pertanian, 1993).

Diantara musuh alami yang dapat digunakan untuk pengendalian hama C. binotalis secara hayati adalah bakteri Bacillus thuringiensis Berliner dan cendawan Beauveria bassiana (Balsamo) Vuillenin. Hasil pengujian laboratorium menunjukkan bahwa keduanya jenis patogen ini efektif dalam mengendalikan hama C. binotalis (Trizelia, 1995; Trizelia dan Arnet, 1996; Trizelia, 1997).

Berdasarkan uraian tersebut diatas, maka perlu dipelajari kemungkinan aplikasi campuran B. thuringiensis dengan B. bassiana terhadap hama C. binotalis sehingga frekuensi aplikasi dapat direduksi, meskipun kadang-kadang sinergisme belum tentu muncul dari pencampuran tersebut.

Tujuan dari penelitian ini adalah untuk mempelajari patogenitas B. thuringiensis dan B. bassiana yang digunakan secara satu persatu atau dalam bentuk campuran terhadap larva C. binotalis di laboratorium.

Manfaat Penelitian ini adalah bakteri B. thuringiensis dan cendawan B. bassiana dapat di gunakan untuk mengendalikan hama C. binotalis; aplikasi campuran ke dua patogen dapat mengurangi konsentrasi dan frekwensi aplikasi, sehingga pengendalian menjadi lebih efektif dan lebih efisien; hasil penelitian ini dapat memenuhi program pemerintah dalam pengembangan pertanian yang berwawasan lingkungan.

METODA PENELITIAN

* Fakultas Pertanian Universitas Andalas, Padang.
Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) dengan pola faktorial yang terdiri dari dua faktor, masing-masing terdiri dalam 5 taraf dan dilakukan 4 kali. Faktor pertama (A) adalah konsentrasi formulasi B. thuringiensis (Flothaec FC) dengan taraf \(a_1 \) = kontrol, \(a_2 \) = 0,1%, \(a_3 \) = 0,15%, \(a_4 \) = 0,2%. Faktor kedua (B) adalah konsentrasi spora B. bassiana dengan taraf \(b_1 \) = kontrol, \(b_2 \) = 10^6 spora/ml, \(b_3 \) = 10^7 spora/ml, \(b_4 \) = 10^8 spora/ml, \(b_5 \) = 10^9 spora/ml.

Aplikasi B. thuringiensis dilakukan dengan cara pencelupan daun kubis lanu dibarkan kering pada daun, dan diletakkan dalam cawan petri yang telah berisi 20 ekor larva C. binotatus, sedangkan aplikasi B. bassiana dilakukan dengan cara menyemprotkan suspensi kondid pada larva C. binotatus.

Pengamatan dilakukan setiap hari dengan menghitung lama kematian larva, persentase mortalitas larva, persentase pupa dan imago yang terbentuk.

HASIL DAN PEMBAHASAN

1. **Lama Kematian Larva**

Hasil pengamatan terhadap lama kematian larva C. binotatus instar IV yang terinfeksi oleh bakteri B. thuringiensis dan cendawan B. bassiana pada masing-masing perlakuannya dapat dilihat pada Tabel 1.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>Lama kematian larva (hari)</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>2,24</td>
<td>2,24</td>
<td>2,25</td>
<td>2,25</td>
<td>2,05</td>
</tr>
<tr>
<td>(a_2)</td>
<td>2,11</td>
<td>1,97</td>
<td>2,10</td>
<td>2,08</td>
<td>1,90</td>
</tr>
<tr>
<td>(a_3)</td>
<td>1,96</td>
<td>1,89</td>
<td>2,01</td>
<td>2,01</td>
<td>2,16</td>
</tr>
<tr>
<td>(a_4)</td>
<td>1,96</td>
<td>2,11</td>
<td>1,95</td>
<td>2,06</td>
<td>1,91</td>
</tr>
<tr>
<td>(a_5)</td>
<td>1,95</td>
<td>1,99</td>
<td>1,95</td>
<td>1,74</td>
<td>1,74</td>
</tr>
</tbody>
</table>

2. **Persentase Mortalitas Larva C. binotatus**

Percakapan mortalitas larva C. binotatus memperlihatkan interaksi antara konsentrasi B. thuringiensis dan B. bassiana seperti pada Tabel 2.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>Persentase mortalitas larva (%)</th>
<th>(b_1)</th>
<th>(b_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>57,75 %</td>
<td>67,35 %</td>
<td>70,76 %</td>
<td>71,85 %</td>
<td>78,88 %</td>
</tr>
<tr>
<td>(a_2)</td>
<td>67,35 %</td>
<td>67,35 %</td>
<td>70,76 %</td>
<td>67,77 %</td>
<td>80,78 %</td>
</tr>
<tr>
<td>(a_3)</td>
<td>35,54 %</td>
<td>35,54 %</td>
<td>86,77 %</td>
<td>90,09 %</td>
<td>90,09 %</td>
</tr>
<tr>
<td>(a_4)</td>
<td>67,35 %</td>
<td>67,35 %</td>
<td>70,76 %</td>
<td>90,09 %</td>
<td>90,09 %</td>
</tr>
</tbody>
</table>

Angka yang digunakan pada baris yang diikuti oleh huruf kecil yang sama adalah berbeda tidak nyata, dan angka yang digunakan pada baris yang diikuti oleh huruf kecil yang sama adalah berbeda tidak nyata pada taraf nyata 5% menurut uji DNMRT.
Dari Tabel 2 terlihat bahwa semakin tinggi konsentrasi B. thiuringiensis dan B. bassiana yang digunakan mortalitas larva juga semakin tinggi. Pada konsentrasi B. thiuringiensis tetap (0,05% dan 0,1%) peningkatan konsentrasi B. bassiana dapat meningkatkan mortalitas larva. Apabila konsentrasi B. thiuringiensis ditingkatkan menjadi 0,15% dan 0,2% penambahan konsentrasi B. bassiana tidak memberikan pengaruh yang nyata terhadap mortalitas larva C. binotatus. Begitu juga sebaliknya, pada konsentrasi B. bassiana tetap peningkatan konsentrasi B. thiuringiensis juga meningkatkan mortalitas larva. Hal ini menunjukkan bahwa sinergisme antara B. thiuringiensis dan B. bassiana lebih nyata terlihat apabila konsentrasi salah satu jenis patogen yang digunakan lebih rendah dan pada konsentrasi yang tinggi penggunaan dua jenis patogen tidak banyak memberikan pengaruh terhadap mortalitas larva.

3. Persentase Pupa C. binotatus yang terbentuk

Hasil analisis sidik ragam terhadap persentase pupa C. binotatus yang terbentuk memperlihatkan interaksi antara konsentrasi B. thiuringiensis dan B. bassiana yang berbeda nyata. Setelah diuji dengan uji lanjutan DNMRT 5% hasilnya dapat dilihat pada Tabel 3.

<table>
<thead>
<tr>
<th>Perkalian</th>
<th>Persentase pupa terbentuk (%)</th>
<th>Arc sin %</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>62.94 a A</td>
<td>24.67 b A</td>
</tr>
<tr>
<td>a2</td>
<td>26.48 a B</td>
<td>19.23 b A</td>
</tr>
<tr>
<td>a3</td>
<td>22.64 a B</td>
<td>18.34 b A</td>
</tr>
<tr>
<td>a4</td>
<td>6.46 a c</td>
<td>3.33 b A</td>
</tr>
<tr>
<td>a5</td>
<td>0.00 c</td>
<td>0.00 a A</td>
</tr>
</tbody>
</table>

Angka-angka pada lajur yang diikuti oleh huruf besar yang sama adalah berbeda tidak nyata; dan angka-angka pada baris yang diikuti oleh huruf kecil yang sama adalah berbeda tidak nyata pada taraf nyata 5% menurut DNMRT.

Dari Tabel 3 terlihat bahwa persentase pupa yang terbentuk akan semakin kecil dengan bertambahnya konsentrasi B. thiuringiensis dan B. bassiana yang digunakan. Pada konsentrasi B. thiuringiensis dan B. bassiana yang tertinggi (0,2% dan 10³ komid/m³), tetapi keduaan ini tidak akan banyak berpengaruh apabila konsentrasi B. thiuringiensis ditingkatkan menjadi 0,2%. Peningkatan konsentrasi B. bassiana tidak berpengaruh nyata terhadap pupa yang terbentuk.

Dari hasil penelitian ini menunjukkan bahwa sinergisme antara B. thiuringiensis dan B. bassiana lebih nyata terlihat apabila konsentrasi bakteri yang digunakan rendah. Pada konsentrasi bakteri yang tinggi penambahan cendawan B. bassiana tidak akan efisien lagi karena hasilnya sama dengan apabila kita hanya menggunakan bakteri saja.

4. Persentase Imago C. binotatus yang terbentuk

Hasil analisis sidik ragam terhadap persentase Imago C. binotatus yang terbentuk memperlihatkan interaksi antara konsentrasi B. thiuringiensis dan B. bassiana yang berbeda nyata. Setelah dilakukan uji lanjutan DNMRT 5% hasilnya dapat dilihat pada Tabel 4.
Dari Tabel 4 nampak bahwa persentase imago C. binotatus yang terbentuk setelah diperlakukan dengan berbagai konsentrasi B. thuringiensis dan B. bassiana berkurang dan berbeda nyata dengan yang tidak diperlakukan (kontrol). Semakin tinggi konsentrasi bakteri dan cendawan yang diberikan semakin sedikit jumlah imago yang terbentuk, baik itu pada perlakuan \(a_1 \), \(a_2 \), \(a_3 \), \(a_4 \), \(a_5 \), \(a_6 \), \(a_7 \), \(a_8 \), \(a_9 \), \(b_1 \), \(b_2 \), \(b_3 \), \(b_4 \), \(b_5 \), \(b_6 \), \(b_7 \), \(b_8 \), \(b_9 \) tidak satupun yang berhasil menjadi imago.

Pada konsentrasi bakteri yang tetap (a) dan cendawan (b) penambahan konsentrasi cendawan akan memperkecil jumlah imago yang terbentuk, tetapi keadaan ini tidak akan banyak berpengaruh apabila konsentrasi bakterinya ditingkatkan. Secara umum dilihat bahwa penambahan konsentrasi jenis patogen ini lebih menguntungkan dibandingkan apabila digunakan sendiri-sendiri.

Keberhasilan dari papa C. binotatus untuk menjadi imago tergantung kepada kuantitas dan kualitas dari papa ini sendiri. Apabila papa yang berhasil terbentuk jumlahnya relatif sedikit maka dengan sendirinya jumlah imago yang terbentuk juga rendah. Bagi masyarakat komunitas papa yang berhasil tersebut kurang baik maka kemungkinannya untuk berhasil menjadi imago juga akan semakin kecil, dan kalaupun bisa menjadi imago biasanya imago yang terbentuk berukuran lebih kecil dari imago normal dengan sayap yang tidak sempurna dan hanya mampu bertahan hidup 1 – 2 hari.

KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan dapat disimpulkan bahwa:

1. Bakteri *B. thuringiensis* dan cendawan *B. bassiana* efektif untuk mengendalikan imago *C. binotatus*.
2. Semakin tinggi konsentrasi kedua patogen yang digunakan, mortalitas larva akan semakin meningkat dan persentase papa serta imago *C. binotatus* yang terbentuk akan semakin menurun.
3. Pencampuran kedua jenis patogen serangga ini mengendalikan imago *C. binotatus* lebih menguntungkan dan lebih efektif dibandingkan jika patogen tersebut digunakan sendiri-sendiri.

Saran

Perlu dilakukan penelitian lebih lanjut tentang efektifitas campuran kedua patogen ini (*B. thuringiensis* dan *B. bassiana*) terhadap hama *C. binotatus* di lapangan sehingga hasilnya lebih baik.

UCAPAN TERIMA KASIH

DAFTAR PUSTAKA

